- Browse by Subject
Browsing by Subject "Pulmonary arterial hypertension (PAH)"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item DNA Damage and Repair in Pulmonary Arterial Hypertension(MDPI, 2020-10-19) Sharma, Samantha; Aldred, Micheala A.; Medicine, School of MedicinePulmonary arterial hypertension (PAH) is a complex multifactorial disease with both genetic and environmental dynamics contributing to disease progression. Over the last decade, several studies have demonstrated the presence of genomic instability and increased levels of DNA damage in PAH lung vascular cells, which contribute to their pathogenic apoptosis-resistant and proliferating characteristics. In addition, the dysregulated DNA damage response pathways have been indicated as causal factors for the presence of persistent DNA damage. To understand the significant implications of DNA damage and repair in PAH pathogenesis, the current review summarizes the recent advances made in this field. This includes an overview of the observed DNA damage in the nuclear and mitochondrial genome of PAH patients. Next, the irregularities observed in various DNA damage response pathways and their role in accumulating DNA damage, escaping apoptosis, and proliferation under a DNA damaging environment are discussed. Although the current literature establishes the pertinence of DNA damage in PAH, additional studies are required to understand the temporal sequence of the above-mentioned events. Further, an exploration of different types of DNA damage in conjunction with associated impaired DNA damage response in PAH will potentially stimulate early diagnosis of the disease and development of novel therapeutic strategies.Item Effect of Exercise on Right Ventricle Inflammation in a Rat Model of Severe Monocrotaline-Induced Pulmonary Arterial Hypertension(Office of the Vice Chancellor for Research, 2015-04-17) Chingombe, Tsungai J.; Lahm, Tim; Brown, Mary BethPulmonary arterial hypertension (PAH) is a devastating disease of progressive remodeling of small and mid-size pulmonary arteries that leads to elevated pulmonary pressure. The work of the right heart is increased due to the elevated pulmonary pressures and can lead to maladaptive cardiac wall hypertrophy, right heart failure and then eventually death. Whether exercise-induced cardiac stress also promotes detrimental right ventricle (RV) inflammation in PAH has not been thoroughly examined. The purpose of this study is to determine if treadmill exercise at low relative intensity in a rat model of severe PAH without promoting greater RV inflammation. Adult male Sprague- Dawley rats were injected with monocrotaline (60mg/kg, subcutaneously, n=14) or saline (healthy controls, n=4). RV tissue was obtained from these rats following a 6 week, 5 times/week treadmill training program at a low intensity of 50% of measured aerobic capacity (VO2max) and compared to tissue obtained from sedentary counterparts. RV immunofluorescent staining for CD45, a lymphocyte marker, was performed to evaluate the inflammatory response due to chronic exercise training. The experiment is still underway and the expected result is that there is no greater exercised induced RV inflammation in PAH rats compared to healthy rats.Item Periostin-expressing cell-specific transforming growth factor-β inhibition in pulmonary artery prevents pulmonary arterial hypertension(PLOS, 2019-08-22) Seki, Mitsuru; Furukawa, Nozomi; Koitabashi, Norimichi; Obokata, Masaru; Conway, Simon J.; Arakawa, Hirokazu; Kurabayashi, Masahiko; Pediatrics, School of MedicineTransforming growth factor beta (TGF-β) has been shown to play a critical role in pathogenesis of pulmonary arterial hypertension (PAH) although the precise role of TGF-β signaling remains uncertain. A recent report has shown that periostin (Pn) is one of the most upregulated proteins in human PAH lung compared with healthy lungs. We established type I TGF-β receptor knockout mice specifically with Pn expressing cell (Pn-Cre/Tgfb1fl/fl mice). Increases in PA pressure and pulmonary artery muscularization were induced by hypoxia of 10% oxygen for 4 weeks. Lung Pn expression was markedly induced by 4 week-hypoxia. Pn-Cre/Tgfb1fl/fl mice showed lower right ventricular pressure elevation, inhibition of PA medial thickening. Fluorescent co-immunostaining showed that Smad3 activation in Pn expressing cell is attenuated. These results suggest that TGF-β signaling in Pn expressing cell may have an important role in the pathogenesis of PAH by controlling medial thickening.