- Browse by Subject
Browsing by Subject "Pseudogenes"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cypiripi: exact genotyping of CYP2D6 using high-throughput sequencing data(Oxford University Press, 2015-06-15) Numanagic, Ibrahim; Malikic, Salem; Pratt, Victoria M.; Skaar, Todd C.; Flockhart, David A.; Sahinalp, S. Cenk; Department of Medicine, IU School of MedicineMOTIVATION: CYP2D6 is highly polymorphic gene which encodes the (CYP2D6) enzyme, involved in the metabolism of 20-25% of all clinically prescribed drugs and other xenobiotics in the human body. CYP2D6 genotyping is recommended prior to treatment decisions involving one or more of the numerous drugs sensitive to CYP2D6 allelic composition. In this context, high-throughput sequencing (HTS) technologies provide a promising time-efficient and cost-effective alternative to currently used genotyping techniques. To achieve accurate interpretation of HTS data, however, one needs to overcome several obstacles such as high sequence similarity and genetic recombinations between CYP2D6 and evolutionarily related pseudogenes CYP2D7 and CYP2D8, high copy number variation among individuals and short read lengths generated by HTS technologies. RESULTS: In this work, we present the first algorithm to computationally infer CYP2D6 genotype at basepair resolution from HTS data. Our algorithm is able to resolve complex genotypes, including alleles that are the products of duplication, deletion and fusion events involving CYP2D6 and its evolutionarily related cousin CYP2D7. Through extensive experiments using simulated and real datasets, we show that our algorithm accurately solves this important problem with potential clinical implications.Item PseudoFuN: Deriving functional potentials of pseudogenes from integrative relationships with genes and microRNAs across 32 cancers(Oxford University Press, 2019-05) Johnson, Travis S.; Li, Sihong; Franz, Eric; Huang, Zhi; Dan Li, Shuyu; Campbell, Moray J.; Huang, Kun; Zhang, Yan; Medicine, School of MedicineBACKGROUND: Long thought "relics" of evolution, not until recently have pseudogenes been of medical interest regarding regulation in cancer. Often, these regulatory roles are a direct by-product of their close sequence homology to protein-coding genes. Novel pseudogene-gene (PGG) functional associations can be identified through the integration of biomedical data, such as sequence homology, functional pathways, gene expression, pseudogene expression, and microRNA expression. However, not all of the information has been integrated, and almost all previous pseudogene studies relied on 1:1 pseudogene-parent gene relationships without leveraging other homologous genes/pseudogenes. RESULTS: We produce PGG families that expand beyond the current 1:1 paradigm. First, we construct expansive PGG databases by (i) CUDAlign graphics processing unit (GPU) accelerated local alignment of all pseudogenes to gene families (totaling 1.6 billion individual local alignments and >40,000 GPU hours) and (ii) BLAST-based assignment of pseudogenes to gene families. Second, we create an open-source web application (PseudoFuN [Pseudogene Functional Networks]) to search for integrative functional relationships of sequence homology, microRNA expression, gene expression, pseudogene expression, and gene ontology. We produce four "flavors" of CUDAlign-based databases (>462,000,000 PGG pairwise alignments and 133,770 PGG families) that can be queried and downloaded using PseudoFuN. These databases are consistent with previous 1:1 PGG annotation and also are much more powerful including millions of de novo PGG associations. For example, we find multiple known (e.g., miR-20a-PTEN-PTENP1) and novel (e.g., miR-375-SOX15-PPP4R1L) microRNA-gene-pseudogene associations in prostate cancer. PseudoFuN provides a "one stop shop" for identifying and visualizing thousands of potential regulatory relationships related to pseudogenes in The Cancer Genome Atlas cancers. CONCLUSIONS: Thousands of new PGG associations can be explored in the context of microRNA-gene-pseudogene co-expression and differential expression with a simple-to-use online tool by bioinformaticians and oncologists alike.Item Pseudogene-gene functional networks are prognostic of patient survival in breast cancer(BMC, 2020) Smerekanych, Sasha; Johnson, Travis S.; Huang, Kun; Zhang, Yan; Medicine, School of MedicineBackground: Given the vast range of molecular mechanisms giving rise to breast cancer, it is unlikely universal cures exist. However, by providing a more precise prognosis for breast cancer patients through integrative models, treatments can become more individualized, resulting in more successful outcomes. Specifically, we combine gene expression, pseudogene expression, miRNA expression, clinical factors, and pseudogene-gene functional networks to generate these models for breast cancer prognostics. Establishing a LASSO-generated molecular gene signature revealed that the increased expression of genes STXBP5, GALP and LOC387646 indicate a poor prognosis for a breast cancer patient. We also found that increased CTSLP8 and RPS10P20 and decreased HLA-K pseudogene expression indicate poor prognosis for a patient. Perhaps most importantly we identified a pseudogene-gene interaction, GPS2-GPS2P1 (improved prognosis) that is prognostic where neither the gene nor pseudogene alone is prognostic of survival. Besides, miR-3923 was predicted to target GPS2 using miRanda, PicTar, and TargetScan, which imply modules of gene-pseudogene-miRNAs that are potentially functionally related to patient survival. Results: In our LASSO-based model, we take into account features including pseudogenes, genes and candidate pseudogene-gene interactions. Key biomarkers were identified from the features. The identification of key biomarkers in combination with significant clinical factors (such as stage and radiation therapy status) should be considered as well, enabling a specific prognostic prediction and future treatment plan for an individual patient. Here we used our PseudoFuN web application to identify the candidate pseudogene-gene interactions as candidate features in our integrative models. We further identified potential miRNAs targeting those features in our models using PseudoFuN as well. From this study, we present an interpretable survival model based on LASSO and decision trees, we also provide a novel feature set which includes pseudogene-gene interaction terms that have been ignored by previous prognostic models. We find that some interaction terms for pseudogenes and genes are significantly prognostic of survival. These interactions are cross-over interactions, where the impact of the gene expression on survival changes with pseudogene expression and vice versa. These may imply more complicated regulation mechanisms than previously understood. Conclusions: We recommend these novel feature sets be considered when training other types of prognostic models as well, which may provide more comprehensive insights into personalized treatment decisions.