- Browse by Subject
Browsing by Subject "Pseudarthrosis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dissecting the cellular and molecular mechanisms mediating neurofibromatosis type 1 related bone defects(2013-06) Rhodes, Steven David; Yang, Feng-Chun; Clapp, D. Wade; Robling, Alexander G.; Bidwell, Joseph P.Skeletal manifestations including short stature, osteoporosis, kyphoscoliosis, and tibial dysplasia cumulatively affect approximately 70% of patients with neurofibromatosis type 1 (NF1). Tibial pseudarthrosis, the chronic non-union of a spontaneous fracture, is a debilitating skeletal malady affecting young children with NF1. These non-healing fractures respond poorly to treatment and often require amputation of the affected limb due to limited understanding of the causative mechanisms. To better understand the cellular and molecular pathogenesis of these osseous defects, we have established a new mouse model which recapitulates a spectrum of skeletal pathologies frequently observed in patients with NF1. Nf1flox/-;Col2.3Cre mice, harboring Nf1 nullizygous osteoblasts on a Nf1+/- background, exhibit multiple osseous defects which are closely reminiscent of those found in NF1 patients, including runting (short stature), bone mass deficits, spinal deformities, and tibial fracture non-union. Through adoptive bone marrow transfer studies, we have demonstrated that the Nf1 haploinsufficient hematopoietic system pivotally mediates the pathogenesis of bone loss and fracture non-union in Nf1flox/-;Col2.3Cre mice. By genetic ablation of a single Nf1 allele in early myeloid development, under the control of LysMCre, we have further delineated that Nf1 haploinsufficient myeloid progenitors and osteoclasts are the culprit lineages mediating accelerated bone loss. Interestingly, conditional Nf1 haploinsufficiency in mature osteoclasts, induced by CtskCre, was insufficient to trigger enhanced lytic activity. These data provide direct genetic evidence for Nf1’s temporal significance as a gatekeeper of the osteoclast progenitor pool in primitive myelopoiesis. On the molecular level, we found that transforming growth factor-beta1 (TGF-β1), a primary mediator in the spatiotemporal coupling of bone remodeling, is pathologically overexpressed by five- to six- fold in both NF1 patients and in mice. Nf1 deficient osteoblasts, the principal source of TGF-β1 in the bone matrix, overexpress TGF-β1 in a gene dosage dependent fashion. Moreover, p21Ras dependent hyperactivation of the Smad pathway accentuates responses to pathological TGF-β1 signals in Nf1 deficient bone cells. As a proof of concept, we demonstrate that pharmacologic TβRI kinase inhibition can rescue bone mass defects and prevent tibial fracture non-union in Nf1flox/-;Col2.3Cre mice, suggesting that targeting TGF-β1 signaling in myeloid lineages may provide therapeutic benefit for treating NF1 skeletal defects.Item Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice(Oxford University Press, 2013-12-01) Sharma, Richa; Wu, Xiaohua; Rhodes, Steven D.; Chen, Shi; He, Yongzheng; Yuan, Jin; Li, Jiliang; Yang, Xianlin; Li, Xiaohong; Jiang, Li; Kim, Edward T.; Stevenson, David A.; Viskochil, David; Xu, Mingjiang; Yang, Feng-Chun; Department of Pediatrics, IU School of MedicineNeurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1−/− pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3Cre