- Browse by Subject
Browsing by Subject "Proto-oncogene proteins B-raf"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bacterial-Driven Inflammation and Mutant BRAF Expression Combine to Promote Murine Colon Tumorigenesis That Is Sensitive to Immune Checkpoint Therapy(American Association for Cancer Research, 2021) DeStefano Shields, Christina E.; White, James R.; Chung, Liam; Wenzel, Alyssa; Hicks, Jessica L.; Tam, Ada J.; Chan, June L.; Dejea, Christine M.; Fan, Hongni; Michel, John; Maiuri, Ashley R.; Sriramkumar, Shruthi; Podicheti, Ram; Rusch, Douglas B.; Wang, Hao; De Marzo, Angelo M.; Besharati, Sepideh; Anders, Robert A.; Baylin, Stephen B.; O’Hagan, Heather M.; Housseau, Franck; Sears, Cynthia L.; Medical and Molecular Genetics, School of MedicineColorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.Item The protective role of DOT1L in UV-induced melanomagenesis(Nature Publishing Group, 2018-01-17) Zhu, Bo; Chen, Shuyang; Wang, Hongshen; Yin, Chengqian; Han, Changpeng; Peng, Cong; Liu, Zhaoqian; Wan, Lixin; Zhang, Zhang; Zhang, Jie; Lian, Christine G.; Ma, Peilin; Xu, Zhi-xiang; Prince, Sharon; Wang, Tao; Gao, Xiumei; Shi, Yujiang; Liu, Dali; Liu, Min; Wei, Wenyi; Wei, Zhi; Pan, Jingxuan; Wang, Yongjun; Xuan, Zhenyu; Hess, Jay L.; Hayward, Nicholas K.; Goding, Colin R.; Chen, Xiang; Zhou, Jun; Cui, Rutao; Pathology and Laboratory Medicine, School of MedicineThe DOT1L histone H3 lysine 79 (H3K79) methyltransferase plays an oncogenic role in MLL-rearranged leukemogenesis. Here, we demonstrate that, in contrast to MLL-rearranged leukemia, DOT1L plays a protective role in ultraviolet radiation (UVR)-induced melanoma development. Specifically, the DOT1L gene is located in a frequently deleted region and undergoes somatic mutation in human melanoma. Specific mutations functionally compromise DOT1L methyltransferase enzyme activity leading to reduced H3K79 methylation. Importantly, in the absence of DOT1L, UVR-induced DNA damage is inefficiently repaired, so that DOT1L loss promotes melanoma development in mice after exposure to UVR. Mechanistically, DOT1L facilitates DNA damage repair, with DOT1L-methylated H3K79 involvement in binding and recruiting XPC to the DNA damage site for nucleotide excision repair (NER). This study indicates that DOT1L plays a protective role in UVR-induced melanomagenesis.