- Browse by Subject
Browsing by Subject "Protein-protein interaction network"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Identifying Genes Associated with Alzheimer’s Disease Using Gene-Based Polygenic Risk Score(IOS Press, 2023) Lai, Dongbing; Zhang, Michael; Li, Rudong; Zhang, Chi; Zhang, Pengyue; Liu, Yunlong; Gao, Sujuan; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicineBackground: Except APOE, Alzheimer's disease (AD) associated genes identified in recent large-scale genome-wide association studies (GWAS) had small effects and explained a small portion of heritability. Many AD-associated genes have even smaller effects thereby sub-threshold p-values in large-scale GWAS and remain to be identified. For some AD-associated genes, drug targeting them may have limited efficacies due to their small effect sizes. Objective: The purpose of this study is to identify AD-associated genes with sub-threshold p-values and prioritize drugs targeting AD-associated genes that have large efficacies. Methods: We developed a gene-based polygenic risk score (PRS) to identify AD genes. It was calculated using SNPs located within genes and having the same directions of effects in different study cohorts to exclude cohort-specific findings and false positives. Gene co-expression modules and protein-protein interaction networks were used to identify AD-associated genes that interact with multiple other genes, as drugs targeting them have large efficacies via co-regulation or interactions. Results: Gene-based PRS identified 389 genes with 164 of them not previously reported as AD-associated. These 389 genes explained 56.12% -97.46% SNP heritability; and they were enriched in brain tissues and 164 biological processes, most of which are related to AD and other neurodegenerative diseases. We prioritized 688 drugs targeting 64 genes that were in the same co-expression modules and/or PPI networks. Conclusions: Gene-based PRS is a cost-effective way to identify AD-associated genes without substantially increasing the sample size. Co-expression modules and PPI networks can be used to identify drugs having large efficacies.Item SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma(BMC, 2020) Liu, Enze; Zhang, Zhuang Zhuang; Cheng, Xiaolin; Liu, Xiaoqi; Cheng, Lijun; BioHealth Informatics, School of Informatics and ComputingBackground: Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy. Due to its wide heterogeneity, PDAC acts aggressively and responds poorly to most chemotherapies, causing an urgent need for the development of new therapeutic strategies. Cell lines have been used as the foundation for drug development and disease modeling. CRISPR-Cas9 plays a key role in every step-in drug discovery: from target identification and validation to preclinical cancer cell testing. Using cell-line models and CRISPR-Cas9 technology together make drug target prediction feasible. However, there is still a large gap between predicted results and actionable targets in real tumors. Biological network models provide great modus to mimic genetic interactions in real biological systems, which can benefit gene perturbation studies and potential target identification for treating PDAC. Nevertheless, building a network model that takes cell-line data and CRISPR-Cas9 data as input to accurately predict potential targets that will respond well on real tissue remains unsolved. Methods: We developed a novel algorithm 'Spectral Clustering for Network-based target Ranking' (SCNrank) that systematically integrates three types of data: expression profiles from tumor tissue, normal tissue and cell-line PDAC; protein-protein interaction network (PPI); and CRISPR-Cas9 data to prioritize potential drug targets for PDAC. The whole algorithm can be classified into three steps: 1. using STRING PPI network skeleton, SCNrank constructs tissue-specific networks with PDAC tumor and normal pancreas tissues from expression profiles; 2. With the same network skeleton, SCNrank constructs cell-line-specific networks using the cell-line PDAC expression profiles and CRISPR-Cas 9 data from pancreatic cancer cell-lines; 3. SCNrank applies a novel spectral clustering approach to reduce data dimension and generate gene clusters that carry common features from both networks. Finally, SCNrank applies a scoring scheme called 'Target Influence score' (TI), which estimates a given target's influence towards the cluster it belongs to, for scoring and ranking each drug target. Results: We applied SCNrank to analyze 263 expression profiles, CRPSPR-Cas9 data from 22 different pancreatic cancer cell-lines and the STRING protein-protein interaction (PPI) network. With SCNrank, we successfully constructed an integrated tissue PDAC network and an integrated cell-line PDAC network, both of which contain 4414 selected genes that are overexpressed in tumor tissue samples. After clustering, 4414 genes are distributed into 198 clusters, which include 367 targets of FDA approved drugs. These drug targets are all scored and ranked by their TI scores, which we defined to measure their influence towards the network. We validated top-ranked targets in three aspects: Firstly, mapping them onto the existing clinical drug targets of PDAC to measure the concordance. Secondly, we performed enrichment analysis to these drug targets and the clusters there are within, to reveal functional associations between clusters and PDAC; Thirdly, we performed survival analysis for the top-ranked targets to connect targets with clinical outcomes. Survival analysis reveals that overexpression of three top-ranked genes, PGK1, HMMR and POLE2, significantly increases the risk of death in PDAC patients. SCNrank is an unbiased algorithm that systematically integrates multiple types of omics data to do potential drug target selection and ranking. SCNrank shows great capability in predicting drug targets for PDAC. Pancreatic cancer-associated gene candidates predicted by our SCNrank approach have the potential to guide genetics-based anti-pancreatic drug discovery.Item TPQCI: A topology potential-based method to quantify functional influence of copy number variations(Elsevier, 2021-08) Liu, Yusong; Ye, Xiufen; Zhan, Xiaohui; Yu, Christina Y.; Zhang, Jie; Huang, Kun; Medical and Molecular Genetics, School of MedicineCopy number variation (CNV) is a major type of chromosomal structural variation that play important roles in many diseases including cancers. Due to genome instability, a large number of CNV events can be detected in diseases such as cancer. Therefore, it is important to identify the functionally important CNVs in diseases, which currently still poses a challenge in genomics. One of the critical steps to solve the problem is to define the influence of CNV. In this paper, we provide a topology potential based method, TPQCI, to quantify this kind of influence by integrating statistics, gene regulatory associations, and biological function information. We used this metric to detect functionally enriched genes on genomic segments with CNV in breast cancer and multiple myeloma and discovered biological functions influenced by CNV. Our results demonstrate that, by using our proposed TPQCI metric, we can detect disease-specific genes that are influenced by CNVs. Source codes of TPQCI are provided in Github (https://github.com/usos/TPQCI).