- Browse by Subject
Browsing by Subject "Protein deficiency"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item ACTUAL AND PRESCRIBED ENERGY AND PROTEIN INTAKES FOR VERY LOW BIRTH WEIGHT INFANTS: AN OBSERVATIONAL STUDY(2012-10-11) Abel, Deborah Marie; Rickard, Karyl A.; Brady, Mary Sue; Engle, William A.; Ingram, David A.; Poindexter, Brenda B.Objectives: To determine (1) whether prescribed and delivered energy and protein intakes during the first two weeks of life met Ziegler’s estimated requirements for Very Low Birth Weight (VLBW) infants, (2) if actual energy during the first week of life correlated with time to regain birth weight and reach full enteral nutrition (EN) defined as 100 kcal/kg/day, (3) if growth velocity from time to reach full EN to 36 weeks’ postmenstrual age (PMA) met Ziegler’s estimated fetal growth velocity (16 g/kg/day), and (4) growth outcomes at 36 weeks’ PMA. Study design: Observational study of feeding, early nutrition and early growth of 40 VLBW infants ≤ 30 weeks GA at birth in three newborn intensive care units NICUs. Results: During the first week of life, the percentages of prescribed and delivered energy (69% [65 kcal/kg/day]) and protein (89% [3.1 g/kg/day]) were significantly less than theoretical estimated requirements. Delivered intakes were 15% less than prescribed because of numerous interruptions in delivery and medical complications. During the second week, the delivered intakes of energy (90% [86 kcal/kg/day]) and protein (102% [3.5 g/kg/day]) improved although the differences between prescribed and delivered were consistently 15%. Energy but not protein intake during the first week was significantly related to time to reach full EN. Neither energy nor protein intake significantly correlated with days to return to birth weight. The average growth velocity from the age that full EN was attained to 36 weeks’ PMA (15 g/kg/day) was significantly less than the theoretical estimated fetal growth velocity (16 g/kg/day) (p<0.03). A difference of 1 g/kg/day represents a total deficit of 42 - 54 grams over the course of a month. At 36 weeks’ PMA, 53% of the VLBW infants had extrauterine growth restriction, or EUGR (<10th percentile) on the Fenton growth grid and 34% had EUGR on the Lubchenco growth grid. Conclusions: The delivered nutrient intakes were consistently less than 15% of the prescribed intakes. Growth velocity between the age when full EN was achieved and 36 weeks’ PMA was 6.7% lower than Ziegler’s estimate. One-third to one-half of the infants have EUGR at 36 weeks’ PMA.Item Effects of protein malnutrition on IgA levels in secretions of adult and weanling guinea pigs(1977) Horton, G. RobertItem A role for HSC70 in regulating antigen trafficking and presentation during macronutrient deprivation(2015-02) Deffit, Sarah N.; Blum, Janice Sherry, 1957-; Kaplan, Mark H.; Bauer, Margaret E.; Yin, Xiao-MingGlobally, protein malnutrition remains problematic, adversely affecting several systems including the immune system. Although poorly understood, protein restriction severely disrupts host immunity and responses to infection. Induction of high-affinity, long-lasting immunity depends upon interactions between B and T lymphocytes. B lymphocytes exploit several pathways including endocytosis, macroautophagy, and chaperone-mediated autophagy to capture and deliver antigens to the endosomal network. Within the endosomal network antigens are processed and loaded onto major histocompatibility complex (MHC) class II molecules for display and recognition by T lymphocytes. To examine the effect of macronutrient malnutrition on MHC class II antigen presentation, we grew B lymphocytes in media containing amino acids, sugars and vitamins but lacking serum, which contains several types of macronutrients. Our studies show macronutrient stress amplified macroautophagy, favoring MHC class II presentation of cytoplasmic antigens targeted to autophagosomes. By contrast, macronutrient stress diminished MHC class II presentation of membrane antigens including the B cell receptor (BCR) and cytoplasmic proteins that utilize the chaperone-mediated autophagy pathway. The BCR plays a critical role in MHC class II antigen presentation, as it captures exogenous antigens leading to internalization and degradation within the endosomal network. While intracellular protease activity increased with macronutrient stress, endocytic trafficking and proteolytic turnover of the BCR was impaired. Addition of high molecular mass macronutrients restored endocytosis and antigen presentation, evidence of tightly regulated membrane trafficking dependent on macronutrient status. Cytosolic chaperone HSC70 has been shown to play a role in endocytosis, macroautophagy, chaperone-mediated autophagy and proteolysis by the proteasome, potentially connecting distinct routes of antigen presentation. Here, altering the abundance of HSC70 was sufficient to overcome the inhibitory effects of nutritional stress on BCR trafficking and antigen presentation suggesting macronutrient deprivation alters the availability of HSC70. Together, these results reveal a key role for macronutrient sensing in regulating immune recognition and the importance of HSC70 in modulating distinct membrane trafficking pathways during cellular stress. These results offer a new explanation for impaired immune responses in protein malnourished individuals.