ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Protein Structure prediction"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    SP5 : Improving Protein Fold Recognition by Using Torsion Angle Profiles and Profile-Based Gap Penalty Model
    (PLOS, 2008-06-04) Zhang, Wei; Liu, Song; Zhou, Yaoqi; BioHealth Informatics, School of Informatics and Computing
    How to recognize the structural fold of a protein is one of the challenges in protein structure prediction. We have developed a series of single (non-consensus) methods (SPARKS, SP2, SP3, SP4) that are based on weighted matching of two to four sequence and structure-based profiles. There is a robust improvement of the accuracy and sensitivity of fold recognition as the number of matching profiles increases. Here, we introduce a new profile-profile comparison term based on real-value dihedral torsion angles. Together with updated real-value solvent accessibility profile and a new variable gap-penalty model based on fractional power of insertion/deletion profiles, the new method (SP5) leads to a robust improvement over previous SP method. There is a 2% absolute increase (5% relative improvement) in alignment accuracy over SP4 based on two independent benchmarks. Moreover, SP5 makes 7% absolute increase (22% relative improvement) in success rate of recognizing correct structural folds, and 32% relative improvement in model accuracy of models within the same fold in Lindahl benchmark. In addition, modeling accuracy of top-1 ranked models is improved by 12% over SP4 for the difficult targets in CASP 7 test set. These results highlight the importance of harnessing predicted structural properties in challenging remote-homolog recognition. The SP5 server is available at http://sparks.informatics.iupui.edu.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University