- Browse by Subject
Browsing by Subject "Protein Folding"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Influence of Sequence Changes and Environment on Intrinsically Disordered Proteins(PLOS, 2009-09-04) Mohan, Amrita; Uversky, Vladimir N.; Radivojac, Predrag; Biochemistry and Molecular Biology, School of MedicineMany large-scale studies on intrinsically disordered proteins are implicitly based on the structural models deposited in the Protein Data Bank. Yet, the static nature of deposited models supplies little insight into variation of protein structure and function under diverse cellular and environmental conditions. While the computational predictability of disordered regions provides practical evidence that disorder is an intrinsic property of proteins, the robustness of disordered regions to changes in sequence or environmental conditions has not been systematically studied. We analyzed intrinsically disordered regions in the same or similar proteins crystallized independently and studied their sensitivity to changes in protein sequence and parameters of crystallographic experiments. The observed changes in the existence, position, and length of disordered regions indicate that their appearance in X-ray structures dramatically depends on changes in amino acid sequence and peculiarities of the crystallographic experiment. Our study also raises general questions regarding protein evolution and the regulation of protein structure, dynamics, and function via variations in cellular and environmental conditions.Item SP5 : Improving Protein Fold Recognition by Using Torsion Angle Profiles and Profile-Based Gap Penalty Model(PLOS, 2008-06-04) Zhang, Wei; Liu, Song; Zhou, Yaoqi; BioHealth Informatics, School of Informatics and ComputingHow to recognize the structural fold of a protein is one of the challenges in protein structure prediction. We have developed a series of single (non-consensus) methods (SPARKS, SP2, SP3, SP4) that are based on weighted matching of two to four sequence and structure-based profiles. There is a robust improvement of the accuracy and sensitivity of fold recognition as the number of matching profiles increases. Here, we introduce a new profile-profile comparison term based on real-value dihedral torsion angles. Together with updated real-value solvent accessibility profile and a new variable gap-penalty model based on fractional power of insertion/deletion profiles, the new method (SP5) leads to a robust improvement over previous SP method. There is a 2% absolute increase (5% relative improvement) in alignment accuracy over SP4 based on two independent benchmarks. Moreover, SP5 makes 7% absolute increase (22% relative improvement) in success rate of recognizing correct structural folds, and 32% relative improvement in model accuracy of models within the same fold in Lindahl benchmark. In addition, modeling accuracy of top-1 ranked models is improved by 12% over SP4 for the difficult targets in CASP 7 test set. These results highlight the importance of harnessing predicted structural properties in challenging remote-homolog recognition. The SP5 server is available at http://sparks.informatics.iupui.edu.Item Structures of filaments from Pick's disease reveal a novel tau protein fold(Nature Research, 2018-09) Falcon, Benjamin; Zhang, Wenjuan; Murzin, Alexey G.; Murshudov, Garib; Garringer, Holly J.; Vidal, Ruben; Crowther, R. Anthony; Ghetti, Bernardino; Scheres, Sjors H.W.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineThe ordered assembly of tau protein into abnormal filamentous inclusions underlies many human neurodegenerative diseases1. Tau assemblies seem to spread through specific neural networks in each disease2, with short filaments having the greatest seeding activity3. The abundance of tau inclusions strongly correlates with disease symptoms4. Six tau isoforms are expressed in the normal adult human brain-three isoforms with four microtubule-binding repeats each (4R tau) and three isoforms that lack the second repeat (3R tau)1. In various diseases, tau filaments can be composed of either 3R or 4R tau, or of both. Tau filaments have distinct cellular and neuroanatomical distributions5, with morphological and biochemical differences suggesting that they may be able to adopt disease-specific molecular conformations6,7. Such conformers may give rise to different neuropathological phenotypes8,9, reminiscent of prion strains10. However, the underlying structures are not known. Using electron cryo-microscopy, we recently reported the structures of tau filaments from patients with Alzheimer's disease, which contain both 3R and 4R tau11. Here we determine the structures of tau filaments from patients with Pick's disease, a neurodegenerative disorder characterized by frontotemporal dementia. The filaments consist of residues Lys254-Phe378 of 3R tau, which are folded differently from the tau filaments in Alzheimer's disease, establishing the existence of conformers of assembled tau. The observed tau fold in the filaments of patients with Pick's disease explains the selective incorporation of 3R tau in Pick bodies, and the differences in phosphorylation relative to the tau filaments of Alzheimer's disease. Our findings show how tau can adopt distinct folds in the human brain in different diseases, an essential step for understanding the formation and propagation of molecular conformers.