- Browse by Subject
Browsing by Subject "Protein conformation"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Characterization of intrinsically disordered proteins with electrospray ionization mass spectrometry: conformational heterogeneity of alpha-synuclein(Wiley, 2010-02-15) Frimpong, Agya K.; Abzalimov, Rinat R.; Uversky, Vladimir N.; Kaltashov, Igor A.; Medicine, School of MedicineConformational heterogeneity of alpha-synuclein was studied with electrospray ionization mass spectrometry by analyzing protein ion charge state distributions, where the extent of multiple charging reflects compactness of the protein conformations in solution. Although alpha-synuclein lacks a single well-defined structure under physiological conditions, it was found to sample four distinct conformational states, ranging from a highly structured one to a random coil. The compact highly structured state of alpha-synuclein is present across the entire range of conditions tested (pH ranging from 2.5 to 10, alcohol content from 0% to 60%), but is particularly abundant in acidic solutions. The only other protein state populated in acidic solutions is a partially folded intermediate state lacking stable tertiary structure. Another, more compact intermediate state is induced by significant amounts of ethanol used as a co-solvent and appears to represent a partially folded conformation with high beta-sheet content. Protein dimerization is observed throughout the entire range of conditions tested, although only acidic solutions favor formation of highly structured dimers of alpha-synuclein. These dimers are likely to present the earliest stages in protein aggregation leading to globular oligomers and, subsequently, protofibrilsItem Characterization of intrinsically disordered regions in proteins informed by human genetic diversity(PLOS, 2022-03-11) Ahmed, Shehab S.; Rifat, Zaara T.; Lohia, Ruchi; Campbell, Arthur J.; Dunker, A. Keith; Rahman, M. Sohel; Iqbal, Sumaiya; Biochemistry and Molecular Biology, School of MedicineAll proteomes contain both proteins and polypeptide segments that don't form a defined three-dimensional structure yet are biologically active-called intrinsically disordered proteins and regions (IDPs and IDRs). Most of these IDPs/IDRs lack useful functional annotation limiting our understanding of their importance for organism fitness. Here we characterized IDRs using protein sequence annotations of functional sites and regions available in the UniProt knowledgebase ("UniProt features": active site, ligand-binding pocket, regions mediating protein-protein interactions, etc.). By measuring the statistical enrichment of twenty-five UniProt features in 981 IDRs of 561 human proteins, we identified eight features that are commonly located in IDRs. We then collected the genetic variant data from the general population and patient-based databases and evaluated the prevalence of population and pathogenic variations in IDPs/IDRs. We observed that some IDRs tolerate 2 to 12-times more single amino acid-substituting missense mutations than synonymous changes in the general population. However, we also found that 37% of all germline pathogenic mutations are located in disordered regions of 96 proteins. Based on the observed-to-expected frequency of mutations, we categorized 34 IDRs in 20 proteins (DDX3X, KIT, RB1, etc.) as intolerant to mutation. Finally, using statistical analysis and a machine learning approach, we demonstrate that mutation-intolerant IDRs carry a distinct signature of functional features. Our study presents a novel approach to assign functional importance to IDRs by leveraging the wealth of available genetic data, which will aid in a deeper understating of the role of IDRs in biological processes and disease mechanisms.Item Per Aspera ad Chaos: Vladimir Uversky’s Odyssey through the Strange World of Intrinsically Disordered Proteins(MDPI, 2023-06-19) Kulkarni, Prakash; Brocca, Stefania; Dunker, A. Keith; Longhi, Sonia; Biochemistry and Molecular Biology, School of MedicineItem The role of solvation on the conformational landscape of α-synuclein(Royal Society of Chemistry, 2023-12-18) Cheung See Kit, Melanie; Cropley, Tyler C.; Bleiholder, Christian; Chouinard, Christopher D.; Sobott, Frank; Webb, Ian K.; Chemistry and Chemical Biology, School of ScienceNative ion mobility mass spectrometry has been used extensively to characterize ensembles of intrinsically disordered protein (IDP) conformers, but the extent to which the gaseous measurements provide realistic pictures of the solution conformations for such flexible proteins remains unclear. Therefore, we systematically studied the relationship between the solution and gaseous structural ensembles by measuring electrospray charge state and collision cross section (CCS) distributions for cationic and anionic forms of α-synuclein (αSN), an anionic protein in solution, as well as directly probed gas phase residue to residue distances via ion/ion reactions between gaseous α-synuclein cations and disulfonic acid linkers that form strong electrostatic bonds. We also combined results from in-solution protein crosslinking identified from native tandem mass spectrometry (MS/MS) with an initial αSN ensemble generated computationally by IDPConformerGenerator to generate an experimentally restrained solution ensemble of αSN. CCS distributions were directly calculated for the solution ensembles determined by NMR and compared to predicted gaseous conformers. While charge state and collision cross section distributions are useful for qualitatively describing the relative structural dynamics of proteins and major conformational changes induced by changes to solution states, the predicted and measured gas phase conformers include subpopulations that are significantly different than those expected from completely "freezing" solution conformations and preserving them in the gas phase. However, insights were gained on the various roles of solvent in stabilizing various conformers for extremely dynamic proteins like α-synuclein.