- Browse by Subject
Browsing by Subject "Prostate Cancer"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item 1021. VP22 Mediates Tumor Vasculature Specific Targeting(Elsevier, 2004-05-01) Raikwar, Sudhanshu P.; Gardner, Thomas A.; Kao, Chinghai; Urology, School of MedicineItem Adoptive Transfer of Myeloid-Derived Suppressor Cells and T Cells in a Prostate Cancer Model(Bio-protocol LLC, 2015-08-20) Yan, Libo; Xu, Yan; Department of Obstetrics and Gynecology, IU School of MedicineThe adoptive transfer of immune cells for cancer, chronic infection, and autoimmunity is an emerging field that has shown promise in recent trials. The transgenic adenocarcinoma mouse prostate (TRAMP) is a classical mouse model of prostate cancer (PCa) and TRAMP cell lines were derived from a TRAMP mouse tumor. TRAMP-C2 is tumorigenic when subcutaneously (s.c.) grafted into syngeneic C57BL/6 host mice (Foster et al., 1997). This protocol will describe the adoptive transfer of purified CD11b(+)Gr1(+) double positive (DP) myeloid-derived suppressor cells (MDSC) and CD3(+) T cells in the TRAMP-C2 prostate cancer mouse model in order to establish the intrinsic functionality of these immune cells and to determine their role in tumorigenesis in vivo (Yan et al., 2014).Item ANTI-TUMOR AND RADIO-SENSITIZING PROPERTIES OF AD-IU2, A PROSTATE-SPECIFIC REPLICATION-COMPETENT ADENOVIRUS ARMED WITH TRAIL(2009-03-18T18:58:00Z) Jimenez, Juan Antonio; Gardner, Thomas A.; Kao, Chinghai; Crabb, David W.; Harrington, Maureen A.; Roman, AnnIn this thesis, I investigated the preclinical utility and antitumor efficacy of TRAIL delivered by Ad-IU2, a prostate-specific replication-competent adenovirus (PSRCA), against androgen-independent prostate cancer. Through transcriptional control of adenoviral early genes E1a, E1b and E4, as well as TRAIL by two bidirectional prostate-specific enhancing sequences (PSES), expression of TRAIL as well as adenoviral replication was limited to prostate-specific antigen and prostate-specific membrane antigen (PSA/PSMA)-expressing cells. Ad-IU2 replicated efficiently in and was restricted to PSA/PSMA-positive prostate cancer cells and induced 5-fold greater apoptosis in androgen-independent CWR22rv and C4-2 prostate cancer cells than the PSRCA control not expressing TRAIL. Ad-IU2 exhibited superior killing efficiency in PSA/PSMA-positive prostate cancer cells at doses 5 to 8-fold lower than that required by a non-TRAIL expressing PSRCA to produce a similar effect. This enhanced cytotoxic effect was not observed in non-prostatic cells, however. As an enhancement of its therapeutic efficacy, Ad-IU2 exerted a bystander effect through either direct cell-to-cell contact or soluble factors present in conditioned media from Ad-IU2-infected cells. In vivo, Ad-IU2, as compared to a control PSRCA, markedly suppressed the growth of subcutaneous CWR22rv xenografts at six weeks post-treatment (3.1 vs. 17.1-fold growth of tumor). The treatment of androgen-independent prostate cancer with Ad-IU2 prior to external beam radiation therapy (EBRT) significantly reduced clonogenic survival with dose reduction factors of 4.91 and 2.43 for CWR22rv and C4-2 cells, respectively. Radio-sensitization by Ad-IU2 was restricted to PSA/PSMA-positive cells. Combinatorial radio-gene therapy resulted in accumulation of cells in G1 phase and a perturbation of the radiation-induced G2 phase arrest. This multi-modal approach combining viral lysis, apoptosis-inducing gene therapy, and radiation therapy could have great impact in achieving complete local tumor control while reducing radiation dose and associated treatment morbidities. This would result in improvement of the clinical outcome of patients with high risk prostate cancer.Item Development of Cancer-Related Protease Assay Using DNA-Encoded Proteomic Probes(2015-05) Ivaturi, Samantha; Jetson, Rachael; Krusemark, CaseyProteases function by breaking the peptide bonds within proteins that hold amino acids together. This action, proteolysis, is essential for the proper functioning of numerous biological processes. The activity of this vast group of enzymes is held in a delicate balance in normal living systems, however tumor growth and metastasis can develop as a result of irregular protease activity. A number of protease activities are well known to be misrelated in cancerous cells. The objective of the project is to develop DNA-encoded probes to use as a tool for protease assays that will enable low-cost, high-throughput profiling of enzymatic activity in samples by DNA sequence analysis for the early detection, characterization, and prevention of cancer. The encoding of functional proteomic information in DNA sequence promises to have significant benefits over traditional methods, including highly sensitive detection and capabilities for extensive multiplexing. Model proteases used in this experiment will include caspase 3 and prostate specific antigen (PSA).Item An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer(Elsevier, 2016-10-25) Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R.; Budka, Justin A.; Plotnik, Joshua P.; Jerde, Travis J.; Hollenhorst, Peter C.; Department of Pharmacology and Toxicology, IU School of MedicineMore than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma.Item Synergy between Angiostatin-Endostatin and Tie-2: A Novel Anti-Angiogenic Gene Therapy for Prostate Cancer(Elsevier, 2004-05-01) Raikwa, Sudhanshu P.; Kao, Chinghai; Gardner, Thomas A.; Urology, School of MedicineItem Targeting Prostate Cancer with Conditionally Replicative Adenovirus Using PSMA Enhancer(ScienceDirect, 2004-12-01) Lee, Sang-Jin; Zhang, Yanping; Lee, Sang Don; Jung, Chaeyong; Li, Xiong; Kim, Hong-Sup; Bae, Kyung-Hee; Jeng, Meei-Huey; Kao, Chinghai; Gardner, Thomas; Urology, School of MedicineProstate cancer is the second most commonly diagnosed cancer in men and accounts for significant mortality and morbidity in the United States. Initially androgen-dependent, prostate cancer ultimately becomes androgen-independent, which makes the disease extremely difficult to cure. In this study, we examined the use of conditionally replication-competent adenovirus for the treatment of hormone-independent prostate cancer. We utilized PSME, an enhancer element for prostate-specific PSMA expression, to control viral E1A protein expression and achieve exclusive virus replication in prostate. Western blotting confirmed that PSME mediated high E1A protein expression in PSMA-positive, androgen-independent prostate cancer cells (C4-2 and CWR22rv), but was much less active in PSMA-negative cancer cells (PC-3 and A549). Consistent with E1A protein expression, the recombinant adenovirus Ad5-PSME-E1a replicated in C4-2 and CWR22rv almost as efficiently as wild type with low levels of androgen, but its replication was significantly attenuated in PSMA-negative cells. In the in vitro killing assay, Ad5-PSME-E1a lysed all C4-2 and CWR22rv cells 5 days after infection, with minimal effect on PSMA-negative cells. In addition, injections of 1.7 × 108 plaque-forming units in a CWR22rv xenograft model in nude mice induced significant tumor growth delay, with a substantial necrotic area. These studies suggest that PSME-driven replication-competent adenovirus may be a new therapeutic modality for prostate cancer patients after hormone ablation therapy.