ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Proportional odds model"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Semiparametric Competing Risks Regression Under Interval Censoring Using the R Package intccr
    (Elsevier, 2019-05) Park, Jun; Bakoyannis, Giorgos; Yiannoutsos, Constantin T.; Biostatistics, School of Public Health
    Background and objective: Competing risk data are frequently interval-censored in real-world applications, that is, the exact event time is not precisely observed but is only known to lie between two time points such as clinic visits. This type of data requires special handling because the actual event times are unknown. To deal with this problem we have developed an easy-to-use open-source statistical software. Methods: An approach to perform semiparametric regression analysis of the cumulative incidence function with interval-censored competing risks data is the sieve maximum likelihood method based on B-splines. An important feature of this approach is that it does not impose restrictive parametric assumptions. Also, this methodology provides semiparametrically efficient estimates. Implementation of this methodology can be easily performed using our new R package intccr. Results: The R package intccr performs semiparametric regression analysis of the cumulative incidence function based on interval-censored competing risks data. It supports a large class of models including the proportional odds and the Fine-Gray proportional subdistribution hazards model as special cases. It also provides the estimated cumulative incidence functions for a particular combination of covariate values. The package also provides some data management functionality to handle data sets which are in a long format involving multiple lines of data per subject. Conclusions: The R package intccr provides a convenient and flexible software for the analysis of the cumulative incidence function based on interval-censored competing risks data.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University