- Browse by Subject
Browsing by Subject "Prion protein (PrP)"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cryo-EM structures of prion protein filaments from Gerstmann-Sträussler-Scheinker disease(Springer, 2022) Hallinan, Grace I.; Ozcan, Kadir A.; Hoq, Md Rejaul; Cracco, Laura; Vago, Frank S.; Bharath, Sakshibeedu R.; Li, Daoyi; Jacobsen, Max; Doud, Emma H.; Mosley, Amber L.; Fernandez, Anllely; Garringer, Holly J.; Jiang, Wen; Ghetti, Bernardino; Vidal, Ruben; Pathology and Laboratory Medicine, School of MedicinePrion protein (PrP) aggregation and formation of PrP amyloid (APrP) are central events in the pathogenesis of prion diseases. In the dominantly inherited prion protein amyloidosis known as Gerstmann-Sträussler-Scheinker (GSS) disease, plaques made of PrP amyloid are present throughout the brain. The c.593t > c mutation in the prion protein gene (PRNP) results in a phenylalanine to serine amino acid substitution at PrP residue 198 (F198S) and causes the most severe amyloidosis among GSS variants. It has been shown that neurodegeneration in this disease is associated with the presence of extracellular APrP plaques and neuronal intracytoplasmic Tau inclusions, that have been shown to contain paired helical filaments identical to those found in Alzheimer disease. Using cryogenic electron microscopy (cryo-EM), we determined for the first time the structures of filaments of human APrP, isolated post-mortem from the brain of two symptomatic PRNP F198S mutation carriers. We report that in GSS (F198S) APrP filaments are composed of dimeric, trimeric and tetrameric left-handed protofilaments with their protomers sharing a common protein fold. The protomers in the cross-β spines consist of 62 amino acids and span from glycine 80 to phenylalanine 141, adopting a previously unseen spiral fold with a thicker outer layer and a thinner inner layer. Each protomer comprises nine short β-strands, with the β1 and β8 strands, as well as the β4 and β9 strands, forming a steric zipper. The data obtained by cryo-EM provide insights into the structural complexity of the PrP filament in a dominantly inherited human PrP amyloidosis. The novel findings highlight the urgency of extending our knowledge of the filaments' structures that may underlie distinct clinical and pathologic phenotypes of human neurodegenerative diseases.Item Detection of tau in Gerstmann-Sträussler-Scheinker disease (PRNP F198S) by [18F]Flortaucipir PET(Biomed Central, 2018-10-29) Risacher, Shannon L.; Farlow, Martin R.; Bateman, Daniel R.; Epperson, Francine; Tallman, Eileen F.; Richardson, Rose; Murrell, Jill R.; Unverzagt, Frederick W.; Apostolova, Liana G.; Bonnin, Jose M.; Ghetti, Bernardino; Saykin, Andrew J.; Radiology and Imaging Sciences, School of MedicineThis study aimed to determine the pattern of [18F]flortaucipir uptake in individuals affected by Gerstmann-Sträussler-Scheinker disease (GSS) associated with the PRNP F198S mutation. The aims were to: 1) determine the pattern of [18F]flortaucipir uptake in two GSS patients; 2) compare tau distribution by [18F]flortaucipir PET imaging among three groups: two GSS patients, two early onset Alzheimer's disease patients (EOAD), two cognitively normal older adults (CN); 3) validate the PET imaging by comparing the pattern of [18F]flortaucipir uptake, in vivo, with that of tau neuropathology, post-mortem. Scans were processed to generate standardized uptake value ratio (SUVR) images. Regional [18F]flortaucipir SUVR was extracted and compared between GSS patients, EOADs, and CNs. Neuropathology and tau immunohistochemistry were carried out post-mortem on a GSS patient who died 9 months after the [18F]flortaucipir scan. The GSS patients were at different stages of disease progression. Patient A was mildly to moderately affected, suffering from cognitive, psychiatric, and ataxia symptoms. Patient B was moderately to severely affected, suffering from ataxia and parkinsonism accompanied by psychiatric and cognitive symptoms. The [18F]flortaucipir scans showed uptake in frontal, cingulate, and insular cortices, as well as in the striatum and thalamus. Uptake was greater in Patient B than in Patient A. Both GSS patients showed greater uptake in the striatum and thalamus than the EOADs and greater uptake in all evaluated regions than the CNs. Thioflavin S fluorescence and immunohistochemistry revealed that the anatomical distribution of tau pathology is consistent with that of [18F]flortaucipir uptake. In GSS patients, the neuroanatomical localization of pathologic tau, as detected by [18F]flortaucipir, suggests correlation with the psychiatric, motor, and cognitive symptoms. The topography of uptake in PRNP F198S GSS is strikingly different from that seen in AD. Further studies of the sensitivity, specificity, and anatomical patterns of tau PET in diseases with tau pathology are warranted.