- Browse by Subject
Browsing by Subject "Prion protein"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Clinicopathological Correlates in a PRNP P102L Mutation Carrier with Rapidly Progressing Parkinsonism-dystonia(Wiley, 2016-07) Umeh, Chizoba C.; Kalakoti, Piyush; Greenberg, Michael K.; Notari, Silvio; Cohen, Yvonne; Gambetti, Pierluigi; Oblak, Adrian L.; Ghetti, Bernardino; Mari, Zoltan; Pathology and Laboratory Medicine, School of MedicineParkinsonism-dystonia is rare in carriers of PRNP P102L mutation. Severity and distribution of prion protein (PrP) deposition may influence the clinical presentation. We present such clinic-pathological correlation in a 56-year-old male with a PRNP P102L mutation associated with a phenotype characterized by rapidly progressing parkinsonism-dystonia. The patient was studied clinically (videotaped exams, brain MRIs); molecular genetically (gene sequence analysis); and neuropathologically (histology, immunohistochemistry) during his 7-month disease course. The patient had parkinsonism, apraxia, aphasia, and dystonia, which progressed rapidly. Molecular genetic analysis revealed PRNP P102L mutation carrier status. Brain MRIs revealed progressive global volume loss and T2/FLAIR hyperintensity in neocortex and basal ganglia. Postmortem examination showed neuronal loss, gliosis, spongiform changes, and PrP deposition in the striatum. PrP immunohistochemistry revealed widespread severe PrP deposition in the thalamus and cerebellar cortex. Based on the neuropathological and molecular-genetic analysis, the rapidly progressing parkinsonism-dystonia correlated with nigrostriatal, thalamic, and cerebellar pathology.Item Gerstmann-Sträussler-Scheinker disease revisited: accumulation of covalently-linked multimers of internal prion protein fragments(Biomed Central, 2019-05-29) Cracco, Laura; Xiao, Xiangzhu; Nemani, Satish K.; Lavrich, Jody; Cali, Ignazio; Ghetti, Bernardino; Notari, Silvio; Surewicz, Witold K.; Gambetti, Pierluigi; Pathology and Laboratory Medicine, School of MedicineDespite their phenotypic heterogeneity, most human prion diseases belong to two broadly defined groups: Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker disease (GSS). While the structural characteristics of the disease-related proteinase K-resistant prion protein (resPrPD) associated with the CJD group are fairly well established, many features of GSS-associated resPrPD are unclear. Electrophoretic profiles of resPrPD associated with GSS variants typically show 6-8 kDa bands corresponding to the internal PrP fragments as well as a variable number of higher molecular weight bands, the molecular nature of which has not been investigated. Here we have performed systematic studies of purified resPrPD species extracted from GSS cases with the A117V (GSSA117V) and F198S (GSSF198S) PrP gene mutations. The combined analysis based on epitope mapping, deglycosylation treatment and direct amino acid sequencing by mass spectrometry provided a conclusive evidence that high molecular weight resPrPD species seen in electrophoretic profiles represent covalently-linked multimers of the internal ~ 7 and ~ 8 kDa fragments. This finding reveals a mechanism of resPrPD aggregate formation that has not been previously established in prion diseases.Item Novel histotypes of sporadic Creutzfeldt–Jakob disease linked to 129MV genotype(BMC, 2023-08-31) Cracco, Laura; Puoti, Gianfranco; Cornacchia, Antonio; Glisic, Katie; Lee, Seong‑Ki; Wang, Zerui; Cohen, Mark L.; Appleby, Brian S.; Cali, Ignazio; Pathology and Laboratory Medicine, School of MedicineThe MV1 and MV2 subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) are linked to the heterozygous methionine (M)/valine (V) polymorphism at codon 129 of the prion protein (PrP) gene. MV2 is phenotypically heterogeneous, whereas MV1, due to its low prevalence, is one of the least well characterized subtypes. In this study, we investigated the biochemical properties of PrPSc and phenotypic expression of cases diagnosed as sCJD MV1 and MV2. We describe four MV2 histotypes: 2C, with cortical (C) coarse pathology; 2K, with kuru (K) plaque deposits; 2C-K, with co-existing C and K histotypic features; and the novel histotype 2C-PL that mimics 2C in the cerebral cortex and cerebellum, but exhibits plaque-like (PL) PrP deposits in subcortical regions (e.g., basal nuclei, thalamus and midbrain). Histotype prevalence is highest for 2C-K (55%), intermediate for 2C (31%), and lowest for 2C-PL and 2K (7%). Nearly every MV2 case expressed both PrPSc types, with T2 being the predominant type ("MV2-1"). MV1 cases typically show a rapid disease course (≤ 4 months), and feature the 1C histotype, phenotypically identical to sCJDMM1. Co-existing PrPSc types, with T1 significantly exceeding T2 ("MV1-2"), are detected in patients diagnosed as MV1 with longer disease courses. We observed four histotypes among MV1-2 cases, including two novel histotypes: 1V, reminiscent of sCJDVV1; 1C-2C, resembling sCJDMM1-2 with predominant MM1 histotypic component; and novel histotypes 1C-2PL and 1C-2K, overall mimicking 1C in the cerebral cortex, but harboring T2 and plaque-like PrP deposits in subcortical regions (1C-2PL), and T2 and kuru plaques in the cerebellum (1C-2K). Lesion profiles of 1C, 1V, and 1C-2C are similar, but differ from 1C-2PL and 1C-2K, as the latter two groups show prominent hippocampal and nigral degeneration. We believe that the novel "C-PL" histotypes are distinct entities rather than intermediate forms between "C" and "C-K" groups, and that 1C-2PL and 1C-2K histotypes may be characterized by different T1 variants of the same size.