ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Presenilin 1"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network
    (BMC, 2018-07-25) Karch, Celeste M.; Hernández, Damián Hernández; Wang, Jen-Chyong; Marsh, Jacob; Hewit, Alex W.; Hsu, Simon; Norton, Joanne; Levitch, Denise; Donahue, Tamara; Sigurdson, Wendy; Ghetti, Bernardino; Farlow, Martin; Chhatwal, Jasmeer; Berman, Sarah; Cruchaga, Carlos; Morris, John C.; Bateman, Randall J.; Dominantly Inherited Alzheimer Network (DIAN); Pébay, Alice; Goate, Alison M.; Pathology and Laboratory Medicine, School of Medicine
    BACKGROUND: Mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) cause autosomal dominant forms of Alzheimer disease (ADAD). More than 280 pathogenic mutations have been reported in APP, PSEN1, and PSEN2. However, understanding of the basic biological mechanisms that drive the disease are limited. The Dominantly Inherited Alzheimer Network (DIAN) is an international observational study of APP, PSEN1, and PSEN2 mutation carriers with the goal of determining the sequence of changes in presymptomatic mutation carriers who are destined to develop Alzheimer disease. RESULTS: We generated a library of 98 dermal fibroblast lines from 42 ADAD families enrolled in DIAN. We have reprogrammed a subset of the DIAN fibroblast lines into patient-specific induced pluripotent stem cell (iPSC) lines. These cells were thoroughly characterized for pluripotency markers. CONCLUSIONS: This library represents a comprehensive resource that can be used for disease modeling and the development of novel therapeutics.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University