- Browse by Subject
Browsing by Subject "Posttranscriptional regulation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item ExSurv: A Web Resource for Prognostic Analyses of Exons Across Human Cancers Using Clinical Transcriptomes(SAGE, 2016-08-07) Hashemikhabir, Seyedsasan; Budak, Gungor; Janga, Sarath Chandra; Department of BioHealth Informatics, IU School of Informatics and ComputingSurvival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients' clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing - a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis.Item RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS(American Society for Biochemistry and Molecular Biology, 2022) Kurup, Reshma Raghava; Oakes, Eimile K.; Manning, Aidan C.; Mukherjee, Priyanka; Vadlamani, Pranathi; Hundley, Heather A.; Medicine, School of MedicineMembers of the ADAR family of double-stranded RNA-binding proteins regulate one of the most abundant RNA modifications in humans, the deamination of adenosine to inosine. Several transcriptome-wide studies have been carried out to identify RNA targets of the active deaminases ADAR1 and ADAR2. However, our understanding of ADAR3, the brain-specific deaminase-deficient ADAR family member, is limited to a few transcripts. In this study, we identified over 3300 transcripts bound by ADAR3 and observed that binding of ADAR3 correlated with reduced editing of over 400 sites in the glioblastoma transcriptome. We further investigated the impact of ADAR3 on gene regulation of the transcript that encodes MAVS, an essential protein in the innate immune response pathway. We observed reduced editing in the MAVS 3' UTR in cells expressing increased ADAR3 or reduced ADAR1 suggesting ADAR3 acts as a negative regulator of ADAR1-mediated editing. While neither ADAR1 knockdown or ADAR3 overexpression affected MAVS mRNA expression, we demonstrate increased ADAR3 expression resulted in upregulation of MAVS protein expression. In addition, we created a novel genetic mutant of ADAR3 that exhibited enhanced RNA binding and MAVS upregulation compared with wildtype ADAR3. Interestingly, this ADAR3 mutant no longer repressed RNA editing, suggesting ADAR3 has a unique regulatory role beyond altering editing levels. Altogether, this study provides the first global view of ADAR3-bound RNAs in glioblastoma cells and identifies both a role for ADAR3 in repressing ADAR1-mediated editing and an RNA-binding dependent function of ADAR3 in regulating MAVS expression.