- Browse by Subject
Browsing by Subject "Polymorphism -- Single Nucleotide"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Genetic Interactions Explain Variance in Cingulate Amyloid Burden: An AV-45 PET Genome-Wide Association and Interaction Study in the ADNI Cohort(Hindawi, 2015-09-03) Li, Jin; Zhang, Qiushi; Chen, Feng; Yan, Jingwen; Kim, Sungeun; Wang, Lei; Feng, Weixing; Saykin, Andrew J.; Liang, Hong; Shen, Li; Radiology and Imaging Sciences, School of MedicineAlzheimer's disease (AD) is the most common neurodegenerative disorder. Using discrete disease status as the phenotype and computing statistics at the single marker level may not be able to address the underlying biological interactions that contribute to disease mechanism and may contribute to the issue of "missing heritability." We performed a genome-wide association study (GWAS) and a genome-wide interaction study (GWIS) of an amyloid imaging phenotype, using the data from Alzheimer's Disease Neuroimaging Initiative. We investigated the genetic main effects and interaction effects on cingulate amyloid-beta (Aβ) load in an effort to better understand the genetic etiology of Aβ deposition that is a widely studied AD biomarker. PLINK was used in the single marker GWAS, and INTERSNP was used to perform the two-marker GWIS, focusing only on SNPs with p ≤ 0.01 for the GWAS analysis. Age, sex, and diagnosis were used as covariates in both analyses. Corrected p values using the Bonferroni method were reported. The GWAS analysis revealed significant hits within or proximal to APOE, APOC1, and TOMM40 genes, which were previously implicated in AD. The GWIS analysis yielded 8 novel SNP-SNP interaction findings that warrant replication and further investigation.Item Identification of pathways for bipolar disorder: a meta-analysis(AMA, 2014-06) Nurnberger, John I. Jr.; Koller, Daniel L.; Jung, Jeesun; Edenberg, Howard J.; Foroud, Tatiana; Guella, Ilaria; Vawter, Marquis P.; Kelsoe, John R.; Medical & Molecular Genetics, School of MedicineIMPORTANCE: Genome-wide investigations provide systematic information regarding the neurobiology of psychiatric disorders. OBJECTIVE: To identify biological pathways that contribute to risk for bipolar disorder (BP) using genes with consistent evidence for association in multiple genome-wide association studies (GWAS). DATA SOURCES: Four independent data sets with individual genome-wide data available in July 2011 along with all data sets contributed to the Psychiatric Genomics Consortium Bipolar Group by May 2012. A prior meta-analysis was used as a source for brain gene expression data. STUDY SELECTION: The 4 published GWAS were included in the initial sample. All independent BP data sets providing genome-wide data in the Psychiatric Genomics Consortium were included as a replication sample. DATA EXTRACTION AND SYNTHESIS: We identified 966 genes that contained 2 or more variants associated with BP at P < .05 in 3 of 4 GWAS data sets (n = 12,127 [5253 cases, 6874 controls]). Simulations using 10,000 replicates of these data sets corrected for gene size and allowed the calculation of an empirical P value for each gene; empirically significant genes were entered into a pathway analysis. Each of these pathways was then tested in the replication sample (n = 8396 [3507 cases, 4889 controls]) using gene set enrichment analysis for single-nucleotide polymorphisms. The 226 genes were also compared with results from a meta-analysis of gene expression in the dorsolateral prefrontal cortex. MAIN OUTCOMES AND MEASURES: Empirically significant genes and biological pathways. RESULTS Among 966 genes, 226 were empirically significant (P < .05). Seventeen pathways were overrepresented in analyses of the initial data set. Six of the 17 pathways were associated with BP in both the initial and replication samples: corticotropin-releasing hormone signaling, cardiac β-adrenergic signaling, phospholipase C signaling, glutamate receptor signaling, endothelin 1 signaling, and cardiac hypertrophy signaling. Among the 226 genes, 9 differed in expression in the dorsolateral prefrontal cortex in patients with BP: CACNA1C, DTNA, FOXP1, GNG2, ITPR2, LSAMP, NPAS3, NCOA2, and NTRK3. CONCLUSIONS AND RELEVANCE: Pathways involved in the genetic predisposition to BP include hormonal regulation, calcium channels, second messenger systems, and glutamate signaling. Gene expression studies implicate neuronal development pathways as well. These results tend to reinforce specific hypotheses regarding BP neurobiology and may provide clues for new approaches to treatment and prevention.