- Browse by Subject
Browsing by Subject "Polyadenylation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation(Public Library of Science, 2022-12-22) Catacalos, Cassandra; Krohannon, Alexander; Somalraju, Sahiti; Meyer, Kate D.; Janga, Sarath Chandra; Chakrabarti, Kausik; BioHealth Informatics, School of Informatics and Computing"Epitranscriptomics" is the new RNA code that represents an ensemble of posttranscriptional RNA chemical modifications, which can precisely coordinate gene expression and biological processes. There are several RNA base modifications, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ), etc. that play pivotal roles in fine-tuning gene expression in almost all eukaryotes and emerging evidences suggest that parasitic protists are no exception. In this review, we primarily focus on m6A, which is the most abundant epitranscriptomic mark and regulates numerous cellular processes, ranging from nuclear export, mRNA splicing, polyadenylation, stability, and translation. We highlight the universal features of spatiotemporal m6A RNA modifications in eukaryotic phylogeny, their homologs, and unique processes in 3 unicellular parasites-Plasmodium sp., Toxoplasma sp., and Trypanosoma sp. and some technological advances in this rapidly developing research area that can significantly improve our understandings of gene expression regulation in parasites.Item mRNA Editing, Processing and Quality Control in Caenorhabditis elegans(Oxford University Press, 2020-07) Arribere, Joshua A.; Kuroyanagi, Hidehito; Hundley, Heather A.; Biology, School of ScienceWhile DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.