- Browse by Subject
Browsing by Subject "Pollution"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Addressing Pollution-Related Global Environmental Health Burdens(AGU, 2018-02-19) Filippelli, Gabriel M.; Taylor, Mark P.; Earth Sciences, School of ScienceNew analyses are revealing the scale of pollution on global health, with a disproportionate share of the impact borne by lower‐income nations, minority and marginalized individuals. Common themes emerge on the drivers of this pollution impact, including a lack of regulation and its enforcement, research and expertise development, and innovative funding mechanisms for mitigation. Creative approaches need to be developed and applied to address and overcome these obstacles. The existing “business as usual” modus operandi continues to externalize human health costs related to pollution, which exerts a negative influence on global environmental health.Item The hidden costs of desert development(SpringerLink, 2020-08) Luo, Lihui; Zhuang, Yanli; Zhao, Wenzhi; Duan, Quntao; Wang, Lixin; Earth Sciences, School of ScienceEconomic benefits and ecological restoration are the leading drivers of desert development through man-made oasis expansion. However, the sustainability of oasis expansion in combating desertification while promoting economic growth remains unclear, though such knowledge is critical for future desert development across the globe. To address this knowledge gap, a comprehensive assessment integrating meteorological, groundwater and remote-sensing data as well as groundwater simulation datasets was conducted to evaluate the spatial-temporal changes in the desert-oasis ecotone of northwest China over the past six decades. Desert development causes a rapid decline in the surrounding groundwater table, increases pollution in soil and groundwater and is associated with an increased frequency of strong sandstorms. Desert development seems to have improved the environment and promoted the economy, but there is a huge cost for the overexploitation of water resources and the transfer of pollution from surface to underground, which could cause deserts to degrade further.Item New Approaches to Identifying and Reducing the Global Burden of Disease From Pollution(Wiley, 2020-03-25) Filippelli, Gabriel; Anenberg, Susan; Taylor, Mark; van Green, Alexander; Khreis, Haneen; Earth Sciences, School of SciencePollution from multiple sources causes significant disease and death worldwide. Some sources are legacy, such as heavy metals accumulated in soils, and some are current, such as particulate matter. Because the global burden of disease from pollution is so high, it is important to identify legacy and current sources and to develop and implement effective techniques to reduce human exposure. But many limitations exist in our understanding of the distribution and transport processes of pollutants themselves, as well as the complicated overprint of human behavior and susceptibility. New approaches are being developed to identify and eliminate pollution in multiple environments. Community-scale detection of geogenic arsenic and fluoride in Bangladesh is helping to map the distribution of these harmful elements in drinking water. Biosensors such as bees and their honey are being used to measure heavy metal contamination in cities such as Vancouver and Sydney. Drone-based remote sensors are being used to map metal hot spots in soils from former mining regions in Zambia and Mozambique. The explosion of low-cost air monitors has allowed researchers to build dense air quality sensing networks to capture ephemeral and local releases of harmful materials, building on other developments in personal exposure sensing. And citizen science is helping communities without adequate resources measure their own environments and in this way gain agency in controlling local pollution exposure sources and/or alerting authorities to environmental hazards. The future of GeoHealth will depend on building on these developments and others to protect a growing population from multiple pollution exposure risks.Item Solar Panel Efficacy vs. Altitude in an Urban City Environment(American Society for Engineering Education, 2015-06) Elkhatib, Wiaam; Schubert, Peter J.; Zusack, Steven; Rosales, Emily; Stanforth, Austin; Department of Engineering Technology, Purdue School of Engineering and Technology, IUPUIIn light of current issues of global warming, pollution, and fossil fuel depletion, alternative and renewable energy sources are increasing in desirability. Among these, solar energy is a popular option. However, it is hypothesized that particulate pollution in urban atmospheres limits photovoltaic (PV) efficacy both in accumulated grime and also in altitude via sunlight attenuation. The objective of this study is to measure photovoltaic power output near solar noon at multiple heights within a city environment to determine the influence of altitude on power output. Building rooftops between 200 and 800 feet were sampled simultaneously with a ground level control within a broad university courtyard. Days having no cloud cover were preferentially chosen. Other factors to consider include the “urban heat island” effect and water vapor in the air, so meteorological parameters were measured simultaneously to reduce confounding errors. Multiple repeated tests were conducted to increase confidence, especially since the effect was anticipated to be small in magnitude. Additionally, students affiliated with the project completed surveys to assess how their involvement impacted their learning of experimental design and procedures. Students who chose not to participate were also surveyed to provide a control group. Comparisons in the data are drawn on a power to ambient light ratio to minimize bias between the PV panels used for testing. Preliminary analysis indicates the effect of altitude is minimal within the parameters of this study. Analysis of our data did not significantly demonstrate an improvement in solar productivity at increased altitudes. However, the rigorous test methodology developed provides a means for quantitative analysis in cities with greater levels of pollution relative to the city tested. The survey of students indicated a positive correlation between participation in the project and the amount students felt they learned during the process.