ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Pneumocystis carinii"

Now showing 1 - 9 of 9
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterization of host mitochondrial ATPase 6 gene over-expression in Pneumocystis carinii infection
    (1998) Asnicar, Mark A.
  • Loading...
    Thumbnail Image
    Item
    Design, synthesis and molecular modeling of novel pyrido[2,3-d]pyrimidine analogs as antifolates: Application of Buchwald-Hartwig aminations of heterocycles
    (ACS, 2013) Gangjee, Aleem; Namjoshi, Ojas A.; Raghavan, Sudhir; Queener, Sherry F.; Kisliuk, Roy L.; Cody, Vivian; Pharmacology and Toxicology, School of Medicine
    Opportunistic infections caused by Pneumocystis jirovecii (P. jirovecii, pj), Toxoplasma gondii (T. gondii, tg), and Mycobacterium avium (M. avium, ma) are the principal causes of morbidity and mortality in patients with acquired immunodeficiency syndrome (AIDS). The absence of any animal models for human Pneumocystis jirovecii pneumonia and the lack of crystal structures of pjDHFR and tgDHFR make the design of inhibitors challenging. A novel series of pyrido[2,3-d]pyrimidines as selective and potent DHFR inhibitors against these opportunistic infections are presented. Buchwald-Hartwig coupling reaction of substituted anilines with pivaloyl protected 2,4-diamino-6-bromo-pyrido[2,3-d]pyrimidine was successfully explored to synthesize these analogues. Compound 26 was the most selective inhibitor with excellent potency against pjDHFR. Molecular modeling studies with a pjDHFR homology model explained the potency and selectivity of 26. Structural data are also reported for 26 with pcDHFR and 16 and 22 with variants of pcDHFR.
  • Loading...
    Thumbnail Image
    Item
    Effect of Pneumocystis carinii on alveolar macrophage function during infection
    (1999) Lasbury, Mark Edward
  • Loading...
    Thumbnail Image
    Item
    Immunology of murine Pneumocystis carinii infection
    (1998) Bellagamba, Juan Miguel Pascale
  • Loading...
    Thumbnail Image
    Item
    Molecular typing of Pneumocystis carinii
    (1995) Lu, Jang-Jih
  • Loading...
    Thumbnail Image
    Item
    Over-expressed genes in pneumocystis carinii-infected rat lung
    (2001) Jiang, Tao
  • Loading...
    Thumbnail Image
    Item
    The Pneumocystis Carinii cyst: infectivity and role in lung damage in a rat model of infection
    (2002) Hsueh, Yi-chung John
  • Loading...
    Thumbnail Image
    Item
    Pneumocystis carinii vimentin: isolation and identification of a primaquine-binding protein
    (1996) Bolyard, Lori Ann
  • Loading...
    Thumbnail Image
    Item
    Scalable Preparation and Differential Pharmacologic and Toxicologic Profiles of Primaquine Enantiomers
    (American Society for Microbiology (ASM), 2016-03) Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Bandara Herath, H. M. T.; Sahu, Rajnish; Gettayacamin, Montip; Tungtaeng, Anchalee; Van Gessel, Yvonne; Baresel, Paul; Wickham, Kristina S.; Bartlett, Marilyn S.; Fronczek, Frank R.; Melendez, Victor; Ohrt, Colin; Reichard, Gregory A.; McChesney, James D.; Rochford, Rosemary; Walker, Larry A.; Department of Pathology & Laboratory Medicine, IU School of Medicine
    Hematotoxicity in individuals genetically deficient in glucose-6-phosphate dehydrogenase (G6PD) activity is the major limitation of primaquine (PQ), the only antimalarial drug in clinical use for treatment of relapsing Plasmodium vivax malaria. PQ is currently clinically used in its racemic form. A scalable procedure was developed to resolve racemic PQ, thus providing pure enantiomers for the first time for detailed preclinical evaluation and potentially for clinical use. These enantiomers were compared for antiparasitic activity using several mouse models and also for general and hematological toxicities in mice and dogs. (+)-(S)-PQ showed better suppressive and causal prophylactic activity than (−)-(R)-PQ in mice infected with Plasmodium berghei. Similarly, (+)-(S)-PQ was a more potent suppressive agent than (−)-(R)-PQ in a mouse model of Pneumocystis carinii pneumonia. However, at higher doses, (+)-(S)-PQ also showed more systemic toxicity for mice. In beagle dogs, (+)-(S)-PQ caused more methemoglobinemia and was toxic at 5 mg/kg of body weight/day given orally for 3 days, while (−)-(R)-PQ was well tolerated. In a novel mouse model of hemolytic anemia associated with human G6PD deficiency, it was also demonstrated that (−)-(R)-PQ was less hemolytic than (+)-(S)-PQ for the G6PD-deficient human red cells engrafted in the NOD-SCID mice. All these data suggest that while (+)-(S)-PQ shows greater potency in terms of antiparasitic efficacy in rodents, it is also more hematotoxic than (−)-(R)-PQ in mice and dogs. Activity and toxicity differences of PQ enantiomers in different species can be attributed to their different pharmacokinetic and metabolic profiles. Taken together, these studies suggest that (−)-(R)-PQ may have a better safety margin than the racemate in human.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University