- Browse by Subject
Browsing by Subject "Pluripotent stem cell"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells(Elsevier, 2019-02-12) VanderWall, Kirstin B.; Vij, Ridhima; Ohlemacher, Sarah K.; Sridhar, Akshayalakshmi; Fligor, Clarisse M.; Feder, Elyse M.; Edler, Michael C.; Baucum, Anthony J.; Cummins, Theodore R.; Meyer, Jason S.; Biology, School of ScienceRetinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation. Thus, efforts of the current study examined the functional maturation of hPSC-derived RGCs, including the ability of astrocytes to modulate this developmental timeline. Morphological and functional properties of RGCs were found to increase over time, with astrocytes significantly accelerating the functional maturation of hPSC-derived RGCs. The results of this study clearly demonstrate the functional and morphological maturation of RGCs in vitro, including the effects of astrocytes on the maturation of hPSC-derived RGCs.Item Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids(Cell Press, 2021-09-14) Fligor, Clarisse M.; Lavekar, Sailee S.; Harkin, Jade; Shields, Priya K.; VanderWall, Kirstin B.; Huang, Kang-Chieh; Gomes, Cátia; Meyer, Jason S.; Biology, School of ScienceThe development of the visual system involves the coordination of spatial and temporal events to specify the organization of varied cell types, including the elongation of axons from retinal ganglion cells (RGCs) to post-synaptic targets in the brain. Retinal organoids recapitulate many features of retinal development, yet have lacked downstream targets into which RGC axons extend, limiting the ability to model projections of the human visual system. To address these issues, retinal organoids were generated and organized into an in vitro assembloid model of the visual system with cortical and thalamic organoids. RGCs responded to environmental cues and extended axons deep into assembloids, modeling the projections of the visual system. In addition, RGC survival was enhanced in long-term assembloids, overcoming prior limitations of retinal organoids in which RGCs are lost. Overall, these approaches will facilitate studies of human visual system development, as well as diseases or injuries to this critical pathway.Item Generating high-fidelity cochlear organoids from human pluripotent stem cells(Elsevier, 2023) Moore, Stephen T.; Nakamura, Takashi; Nie, Jing; Solivais, Alexander J.; Aristizábal-Ramírez, Isabel; Ueda, Yoshitomo; Manikandan, Mayakannan; Reddy, V. Shweta; Romano, Daniel R.; Hoffman, John R.; Perrin, Benjamin J.; Nelson, Rick F.; Frolenkov, Gregory I.; Chuva de Sousa Lopes, Susana M.; Hashino, Eri; Otolaryngology -- Head and Neck Surgery, School of MedicineMechanosensitive hair cells in the cochlea are responsible for hearing but are vulnerable to damage by genetic mutations and environmental insults. The paucity of human cochlear tissues makes it difficult to study cochlear hair cells. Organoids offer a compelling platform to study scarce tissues in vitro; however, derivation of cochlear cell types has proven non-trivial. Here, using 3D cultures of human pluripotent stem cells, we sought to replicate key differentiation cues of cochlear specification. We found that timed modulations of Sonic Hedgehog and WNT signaling promote ventral gene expression in otic progenitors. Ventralized otic progenitors subsequently give rise to elaborately patterned epithelia containing hair cells with morphology, marker expression, and functional properties consistent with both outer and inner hair cells in the cochlea. These results suggest that early morphogenic cues are sufficient to drive cochlear induction and establish an unprecedented system to model the human auditory organ.Item Immunoreactivity of Pluripotent Markers SSEA-5 and L1CAM in Human Tumors, Teratomas, and Induced Pluripotent Stem Cells(Hindawi Publishing Corporation, 2013) Cassidy, Linda; Choi, Meerim; Meyer, Jason; Chang, Rui; Seigel, Gail M.; Department of Biology, School of SciencePluripotent stem cell markers can be useful for diagnostic evaluation of human tumors. The novel pluripotent marker stage-specific embryonic antigen-5 (SSEA-5) is expressed in undifferentiated human induced pluripotent cells (iPSCs), but little is known about SSEA-5 expression in other primitive tissues (e.g., human tumors). We evaluated SSEA-5 immunoreactivity patterns in human tumors, cell lines, teratomas, and iPS cells together with another pluripotent cell surface marker L1 cell adhesion molecule (L1CAM). We tested two hypotheses: (1) SSEA-5 and L1CAM would be immunoreactive and colocalized in human tumors; (2) SSEA-5 and L1CAM immunoreactivity would persist in iPSCs following retinal differentiating treatment. SSEA-5 immunofluorescence was most pronounced in primitive tumors, such as embryonal carcinoma. In tumor cell lines, SSEA-5 was highly immunoreactive in Capan-1 cells, while L1CAM was highly immunoreactive in U87MG cells. SSEA-5 and L1CAM showed colocalization in undifferentiated iPSCs, with immunopositive iPSCs remaining after 20 days of retinal differentiating treatment. This is the first demonstration of SSEA-5 immunoreactivity in human tumors and the first indication of SSEA-5 and L1CAM colocalization. SSEA-5 and L1CAM warrant further investigation as potentially useful tumor markers for histological evaluation or as markers to monitor the presence of undifferentiated cells in iPSC populations prior to therapeutic use.Item Stepwise Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells Enables Analysis of Glaucomatous Neurodegeneration(Wiley, 2016-06) Ohlemacher, Sarah K.; Sridhar, Akshayalakshmi; Xiao, Yucheng; Hochstetler, Alexandra E.; Sarfarazi, Mansoor; Cummins, Theodore R.; Meyer, Jason S.; Department of Biology, School of ScienceHuman pluripotent stem cells (hPSCs), including both embryonic and induced pluripotent stem cells, possess the unique ability to readily differentiate into any cell type of the body, including cells of the retina. Although previous studies have demonstrated the ability to differentiate hPSCs to a retinal lineage, the ability to derive retinal ganglion cells (RGCs) from hPSCs has been complicated by the lack of specific markers with which to identify these cells from a pluripotent source. In the current study, the definitive identification of hPSC-derived RGCs was accomplished by their directed, stepwise differentiation through an enriched retinal progenitor intermediary, with resultant RGCs expressing a full complement of associated features and proper functional characteristics. These results served as the basis for the establishment of induced pluripotent stem cells (iPSCs) from a patient with a genetically inherited form of glaucoma, which results in damage and loss of RGCs. Patient-derived RGCs specifically exhibited a dramatic increase in apoptosis, similar to the targeted loss of RGCs in glaucoma, which was significantly rescued by the addition of candidate neuroprotective factors. Thus, the current study serves to establish a method by which to definitively acquire and identify RGCs from hPSCs and demonstrates the ability of hPSCs to serve as an effective in vitro model of disease progression. Moreover, iPSC-derived RGCs can be utilized for future drug screening approaches to identify targets for the treatment of glaucoma and other optic neuropathies.