- Browse by Subject
Browsing by Subject "Platooning"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Design Requirements of Human-Driven, Hybrid, and Autonomous Trucks for Collision-Avoidance in Platooning(2024-05) Shanker, Shreyas; Nalim, M. Razi; Anwar, Sohel; Tovar, AndresThe trucking industry faces many challenges, the most pressing of them being the rising costs to run the fleets. This is mainly caused by driver shortage, low driver retention and high wages for the drivers as well as rising fuel costs. Autonomous trucks promise to solve these issues by eliminating this bottleneck in the industry and bringing some relief to logistics companies and fleet owners. A prelude to fully autonomous trucks is expected to be seen as part of a hybrid platoon where a human driver would lead one or more autonomous trucks close behind them thus enabling higher tonnage to be transported by one driver. This enables early autonomous software to be tested and phased onto highways in a more controlled manner since present software can maintain set distances behind vehicles and respect lane markers already. Platooning also enables significant fuel savings from reduced aerodynamic drag on all vehicles at close distances. Since vehicle functionality is largely built around the driver, the removal of this piece affords the opportunity to rethink parts of the design to suit the needs of the future more favorably. Based on the prevalent literature as well as simulation of platooning scenarios under various vehicle and environmental conditions, the thesis will analyze the development of autonomous vehicles with a focus on the opportunities to rethink conventional design constraints of a truck and to design one that is better suited to the functions it will be carrying out autonomously and in the context of technologies that are in development and would be available in the future with a special emphasis on platooning scenarios. In this thesis, a MATLAB model was used to simulate a 2-vehicle platoon where the lead truck is a conventional class 8 vehicle while the key parameters of the following truck was tested in various road conditions to minimize Inter Vehicular Distance (IVD) and maximize fuel savings while ensuring safety. The study was able to conclude that an alternative design to autonomous trucks would result in maximum benefits from synergistic technologies like platooning and battery powered trucks. The results showed the most benefits from a reduction in perception-reaction time and communication technology followed by strategic configuration of vehicles in a platoon by Gross vehicle weight (GVW). Also, the need to account for coefficient of friction due to non-ideal environmental conditions with an adjustment in IVD is observed.Item Study of Connectivity Probability in Vanets by a Two-Dimensional Platoon-Based Model(2021-08) Liu, Donglin; Li, Lingxi; Chen, Yaobin; King, BrainWith the fast development of 5G networks and the advancement in networking technologies, more and more new technologies such as internet of vehicles (IoV) is catching our eyes. With technologies of artificial intelligence and automatic control, IoV is transformed into an intelligent transportation system (ITS). The object of this thesis is to analyze the connectivity probability issues in vehicle ad hoc networks (VANETs), which is a subset of ITS. This will be achieved by a platoon-based two dimensional model. In order to make the results more accurate and more close to real scenario, different situations will be analyzed separately, and different types of platoon will be included. In addition, other system parameters are also discussed and stimulated. The results show that many parameters like the increases of traffic density, ratio of platoon, and lane numbers will improve connectivity probability. No-leader based platoons are easier to connect to the base stations compared to leader based platoons.