- Browse by Subject
Browsing by Subject "Placental vasculature"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Angiopoietin-Tie2 axis contributes to placental vascular disruption and adverse birth outcomes in malaria in pregnancy(Elsevier, 2021-11) Tran, Vanessa; Weckman, Andrea M.; Crowley, Valerie M.; Cahill, Lindsay S.; Zhong, Kathleen; Cabrera, Ana; Elphinstone, Robyn E.; Pearce, Victoria; Madanitsa, Mwayiwawo; Kalilani-Phiri, Linda; Mwapasa, Victor; Khairallah, Carole; Conroy, Andrea L.; ter Kuile, Feiko O.; Sled, John G.; Kain, Kevin C.; Pediatrics, School of MedicineBackground: Malaria during pregnancy is a major contributor to the global burden of adverse birth outcomes including fetal growth restriction, preterm birth, and fetal loss. Recent evidence supports a role for angiogenic dysregulation and perturbations to placental vascular development in the pathobiology of malaria in pregnancy. The Angiopoietin-Tie2 axis is critical for placental vascularization and remodeling. We hypothesized that disruption of this pathway would contribute to malaria-induced adverse birth outcomes. Methods: Using samples from a previously conducted prospective cohort study of pregnant women in Malawi, we measured circulating levels of angiopoietin-1 (Angpt-1) and Angpt-2 by Luminex (n=1392). We used a preclinical model of malaria in pregnancy (Plasmodium berghei ANKA [PbA] in pregnant BALB/c mice), genetic disruption of Angpt-1 (Angpt1+/- mice), and micro-CT analysis of placental vasculature to test the hypothesis that disruptions to the Angpt-Tie2 axis by malaria during pregnancy would result in aberrant placental vasculature and adverse birth outcomes. Findings: Decreased circulating levels of Angpt-1 and an increased ratio of Angpt-2/Angpt-1 across pregnancy were associated with malaria in pregnancy. In the preclinical model, PbA infection recapitulated disruptions to the Angiopoietin-Tie2 axis resulting in reduced fetal growth and viability. Malaria decreased placental Angpt-1 and Tie2 expression and acted synergistically with reduced Angpt-1 in heterozygous dams (Angpt1+/-), to worsen birth outcomes by impeding vascular remodeling required for placental function. Interpretation: Collectively, these data support a mechanistic role for the Angpt-Tie2 axis in malaria in pregnancy, including a potential protective role for Angpt-1 in mitigating infection-associated adverse birth outcomes.Item Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells(Wiley, 2016-03) Solomon, Ioana; O’Reilly, Megan; Ionescu, Lavinia; Alphonse, Rajesh S.; Rajabali, Saima; Zhong, Shumei; Vadivel, Arul; Shelley, W. Chris; Yoder, Mervin C.; Thébaud, Bernard; Department of Pediatrics, IU School of MedicineAlterations in the development of the placental vasculature can lead to pregnancy complications, such as preeclampsia. Currently, the cause of preeclampsia is unknown, and there are no specific prevention or treatment strategies. Further insight into the placental vasculature may aid in identifying causal factors. Endothelial colony-forming cells (ECFCs) are a subset of endothelial progenitor cells capable of self-renewal and de novo vessel formation in vitro. We hypothesized that ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Human placentas were collected from term pregnancies delivered by cesarean section (n = 16). Placental micro- and macrovasculature was collected from the maternal and fetal side of the placenta, respectively, and ECFCs were isolated and characterized. ECFCs were CD31(+), CD105(+), CD144(+), CD146(+), CD14(-), and CD45(-), took up 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein, and bound Ulex europaeus agglutinin 1. In vitro, macrovascular ECFCs had a greater potential to generate high-proliferative colonies and formed more complex capillary-like networks on Matrigel compared with microvascular ECFCs. In contrast, in vivo assessment demonstrated that microvascular ECFCs had a greater potential to form vessels. Macrovascular ECFCs were of fetal origin, whereas microvascular ECFCs were of maternal origin. ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Although macrovascular ECFCs demonstrated greater vessel and colony-forming potency in vitro, this did not translate in vivo, where microvascular ECFCs exhibited a greater vessel-forming ability. These important findings contribute to the current understanding of normal placental vascular development and may aid in identifying factors involved in preeclampsia and other pregnancy complications.