- Browse by Subject
Browsing by Subject "Physiology"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Analysis of the effects of spaceflight and local administration of thrombopoietin to a femoral defect injury on distal skeletal sites(Springer Nature, 2021-03-26) Zamarioli, Ariane; Campbell, Zachery R.; Maupin, Kevin A.; Childress, Paul J.; Ximenez, Joao P.B.; Adam, Gremah; Chakraborty, Nabarun; Gautam, Aarti; Hammamieh, Rasha; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineWith increased human presence in space, bone loss and fractures will occur. Thrombopoietin (TPO) is a recently patented bone healing agent. Here, we investigated the systemic effects of TPO on mice subjected to spaceflight and sustaining a bone fracture. Forty, 9-week-old, male, C57BL/6 J were divided into 4 groups: (1) Saline+Earth; (2) TPO + Earth; (3) Saline+Flight; and (4) TPO + Flight (n = 10/group). Saline- and TPO-treated mice underwent a femoral defect surgery, and 20 mice were housed in space ("Flight") and 20 mice on Earth for approximately 4 weeks. With the exception of the calvarium and incisor, positive changes were observed in TPO-treated, spaceflight bones, suggesting TPO may improve osteogenesis in the absence of mechanical loading. Thus, TPO, may serve as a new bone healing agent, and may also improve some skeletal properties of astronauts, which might be extrapolated for patients on Earth with restraint mobilization and/or are incapable of bearing weight on their bones.Item Asparagine starvation suppresses histone demethylation through iron depletion(Elsevier, 2023-03-16) Jiang, Jie; Srivastava, Sankalp; Liu, Sheng; Seim, Gretchen; Claude, Rodney; Zhong, Minghua; Cao, Sha; Davé, Utpal; Kapur, Reuben; Mosley, Amber L.; Zhang, Chi; Wan, Jun; Fan, Jing; Zhang, Ji; Pediatrics, School of MedicineIntracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.Item Blocking muscle wasting via deletion of the muscle-specific E3 ligase MuRF1 impedes pancreatic tumor growth(Springer Nature, 2023-05-13) Neyroud, Daria; Laitano, Orlando; Dasgupta, Aneesha; Lopez, Christopher; Schmitt, Rebecca E.; Schneider, Jessica Z.; Hammers, David W.; Sweeney, H. Lee; Walter, Glenn A.; Doles, Jason; Judge, Sarah M.; Judge, Andrew R.; Anatomy, Cell Biology and Physiology, School of MedicineCancer-induced muscle wasting reduces quality of life, complicates or precludes cancer treatments, and predicts early mortality. Herein, we investigate the requirement of the muscle-specific E3 ubiquitin ligase, MuRF1, for muscle wasting induced by pancreatic cancer. Murine pancreatic cancer (KPC) cells, or saline, were injected into the pancreas of WT and MuRF1-/- mice, and tissues analyzed throughout tumor progression. KPC tumors induces progressive wasting of skeletal muscle and systemic metabolic reprogramming in WT mice, but not MuRF1-/- mice. KPC tumors from MuRF1-/- mice also grow slower, and show an accumulation of metabolites normally depleted by rapidly growing tumors. Mechanistically, MuRF1 is necessary for the KPC-induced increases in cytoskeletal and muscle contractile protein ubiquitination, and the depression of proteins that support protein synthesis. Together, these data demonstrate that MuRF1 is required for KPC-induced skeletal muscle wasting, whose deletion reprograms the systemic and tumor metabolome and delays tumor growth.Item Cell non-autonomous requirement of p75 in the development of geniculate oral sensory neurons(Springer Nature, 2020-12-17) Tang, Tao; Donnelly, Christopher R.; Shah, Amol A.; Bradley, Robert M.; Mistretta, Charlotte M.; Pierchala, Brian A.; Anatomy and Cell Biology, School of MedicineDuring development of the peripheral taste system, oral sensory neurons of the geniculate ganglion project via the chorda tympani nerve to innervate taste buds in fungiform papillae. Germline deletion of the p75 neurotrophin receptor causes dramatic axon guidance and branching deficits, leading to a loss of geniculate neurons. To determine whether the developmental functions of p75 in geniculate neurons are cell autonomous, we deleted p75 specifically in Phox2b + oral sensory neurons (Phox2b-Cre; p75fx/fx) or in neural crest-derived cells (P0-Cre; p75fx/fx) and examined geniculate neuron development. In germline p75−/− mice half of all geniculate neurons were lost. The proportion of Phox2b + neurons, as compared to Phox2b-pinna-projecting neurons, was not altered, indicating that both populations were affected similarly. Chorda tympani nerve recordings demonstrated that p75−/− mice exhibit profound deficits in responses to taste and tactile stimuli. In contrast to p75−/− mice, there was no loss of geniculate neurons in either Phox2b-Cre; p75fx/fx or P0-Cre; p75fx/fx mice. Electrophysiological analyses demonstrated that Phox2b-Cre; p75fx/fx mice had normal taste and oral tactile responses. There was a modest but significant loss of fungiform taste buds in Phox2b-Cre; p75fx/fx mice, although there was not a loss of chemosensory innervation of the remaining fungiform taste buds. Overall, these data suggest that the developmental functions of p75 are largely cell non-autonomous and require p75 expression in other cell types of the chorda tympani circuit.Item Collagenase-based wound debridement agent induces extracellular matrix supporting phenotype in macrophages(Springer Nature, 2024-02-08) Banerjee, Pradipta; Das, Amitava; Singh, Kanhaiya; Khanna, Savita; Sen, Chandan K.; Roy, Sashwati; Surgery, School of MedicineMacrophages assume diverse phenotypes and functions in response to cues from the microenvironment. Earlier we reported an anti-inflammatory effect of Collagenase Santyl® Ointment (CSO) and the active constituent of CSO (CS-API) on wound macrophages in resolving wound inflammation indicating roles beyond debridement in wound healing. Building upon our prior finding, this study aimed to understand the phenotypes and subsets of macrophages following treatment with CS-API. scRNA-sequencing was performed on human blood monocyte-derived macrophages (MDM) following treatment with CS-API for 24 h. Unbiased data analysis resulted in the identification of discrete macrophage subsets based on their gene expression profiles. Following CS-API treatment, clusters 3 and 4 displayed enrichment of macrophages with high expression of genes supporting extracellular matrix (ECM) function. IPA analysis identified the TGFβ-1 pathway as a key hub for the CS-API-mediated ECM-supportive phenotype of macrophages. Earlier we reported the physiological conversion of wound-site macrophages to fibroblasts in granulation tissue and impairment of such response in diabetic wounds, leading to compromised ECM and tensile strength. The findings that CSO can augment the physiological conversion of macrophages to fibroblast-like cells carry significant clinical implications. This existing clinical intervention, already employed for wound care, can be readily repurposed to improve the ECM response in chronic wounds.Item Delirium severity does not differ between medical and surgical intensive care units after adjusting for medication use(Springer Nature, 2022-08-24) Ortiz, Damaris; Lindroth, Heidi L.; Braly, Tyler; Perkins, Anthony J.; Mohanty, Sanjay; Meagher, Ashley D.; Khan, Sikandar H.; Boustani, Malaz A.; Khan, Babar A.; Surgery, School of MedicineSevere delirium is associated with an increased risk of mortality, institutionalization, and length of stay. Few studies have examined differences in delirium severity between different populations of critically ill patients. The objective of the study was to compare delirium severity and the presence of the four core features between adults in the surgical intensive care unit (SICU) and medical intensive care unit (MICU) while controlling for variables known to be associated with delirium. This is a secondary analysis of two parallel randomized multi-center trials conducted from March 2009 to January 2015 at 3 Indianapolis hospitals. A total of 474 adults with delirium were included in the analysis. Subjects were randomized in a 1:1 ratio in random blocks of 4 by a computer program. Patients were randomized to either haloperidol prescribing or de-prescribing regimen vs usual care. Delirium severity was assessed daily or twice-daily using the CAM-ICU-7 beginning after 24 h of ICU admission and until discharge from the hospital, death, or 30 days after enrollment. Secondary outcomes included hospital length of stay, hospital and 30-day mortality, and delirium-related adverse events. These outcomes were compared between SICU and MICU settings for this secondary analysis. Out of 474 patients, 237 were randomized to intervention. At study enrollment, the overall cohort had a mean age of 59 (SD 16) years old, was 54% female, 44% African-American, and 81% were mechanically ventilated upon enrollment. MICU participants were significantly older and severely ill with a higher premorbid cognitive and physical dysfunction burden. In univariate analysis, SICU participants had significantly higher mean total CAM-ICU-7 scores, corresponding to delirium severity, (4.15 (2.20) vs 3.60 (2.32), p = 0.02), and a lower mean RASS score (- 1.79 (1.28) vs - 1.53 (1.27), p < 0.001) compared to MICU participants. Following adjustment for benzodiazepines and opioids, delirium severity did not significantly differ between groups. The presence of Feature 3, altered level of consciousness, was significantly associated with the SICU participants, identifying as Black, premorbid functional impairment, benzodiazepines, opioids, and dexmedetomidine. In this secondary analysis examining differences in delirium severity between MICU and SICU participants, we did not identify a difference between participant populations following adjustment for administered benzodiazepines and opioids. We did identify that an altered level of consciousness, core feature 3 of delirium, was associated with SICU setting, identifying as Black, activities of daily living, benzodiazepines and opioid medications. These results suggest that sedation practice patterns play a bigger role in delirium severity than the underlying physiologic insult, and expression of core features of delirium may vary based on individual factors.Item Elucidating the complex organization of neural micro-domains in the locust Schistocerca gregaria using dMRI(Springer Nature, 2021-02-09) Shahid, Syed Salman; Kerskens, Christian M.; Burrows, Malcolm; Witney, Alice G.; Radiology and Imaging Sciences, School of MedicineTo understand brain function it is necessary to characterize both the underlying structural connectivity between neurons and the physiological integrity of these connections. Previous research exploring insect brain connectivity has typically used electron microscopy techniques, but this methodology cannot be applied to living animals and so cannot be used to understand dynamic physiological processes. The relatively large brain of the desert locust, Schistercera gregaria (Forksȧl) is ideal for exploring a novel methodology; micro diffusion magnetic resonance imaging (micro-dMRI) for the characterization of neuronal connectivity in an insect brain. The diffusion-weighted imaging (DWI) data were acquired on a preclinical system using a customised multi-shell diffusion MRI scheme optimized to image the locust brain. Endogenous imaging contrasts from the averaged DWIs and Diffusion Kurtosis Imaging (DKI) scheme were applied to classify various anatomical features and diffusion patterns in neuropils, respectively. The application of micro-dMRI modelling to the locust brain provides a novel means of identifying anatomical regions and inferring connectivity of large tracts in an insect brain. Furthermore, quantitative imaging indices derived from the kurtosis model that include fractional anisotropy (FA), mean diffusivity (MD) and kurtosis anisotropy (KA) can be extracted. These metrics could, in future, be used to quantify longitudinal structural changes in the nervous system of the locust brain that occur due to environmental stressors or ageing.Item Female and male mice have differential longterm cardiorenal outcomes following a matched degree of ischemia–reperfusion acute kidney injury(Springer Nature, 2022-01-12) Soranno, Danielle E.; Baker, Peter, II.; Kirkbride-Romeo, Lara; Wennersten, Sara A.; Ding, Kathy; Keith, Brysen; Cavasin, Maria A.; Altmann, Christopher; Bagchi, Rushita A.; Haefner, Korey R.; Montford, John; Gist, Katja M.; Vergnes, Laurent; Reue, Karen; He, Zhibin; Elajaili, Hanan; Okamura, Kayo; Nozik, Eva; McKinsey, Timothy A.; Faubel, Sarah; Pediatrics, School of MedicineAcute kidney injury (AKI) is common in patients, causes systemic sequelae, and predisposes patients to long-term cardiovascular disease. To date, studies of the effects of AKI on cardiovascular outcomes have only been performed in male mice. We recently demonstrated that male mice developed diastolic dysfunction, hypertension and reduced cardiac ATP levels versus sham 1 year after AKI. The effects of female sex on long-term cardiac outcomes after AKI are unknown. Therefore, we examined the 1-year cardiorenal outcomes following a single episode of bilateral renal ischemia–reperfusion injury in female C57BL/6 mice using a model with similar severity of AKI and performed concomitantly to recently published male cohorts. To match the severity of AKI between male and female mice, females received 34 min of ischemia time compared to 25 min in males. Serial renal function, echocardiograms and blood pressure assessments were performed throughout the 1-year study. Renal histology, and cardiac and plasma metabolomics and mitochondrial function in the heart and kidney were evaluated at 1 year. Measured glomerular filtration rates (GFR) were similar between male and female mice throughout the 1-year study period. One year after AKI, female mice had preserved diastolic function, normal blood pressure, and preserved levels of cardiac ATP. Compared to males, females demonstrated pathway enrichment in arginine metabolism and amino acid related energy production in both the heart and plasma, and glutathione in the plasma. Cardiac mitochondrial respiration in Complex I of the electron transport chain demonstrated improved mitochondrial function in females compared to males, regardless of AKI or sham. This is the first study to examine the long-term cardiac effects of AKI on female mice and indicate that there are important sex-related cardiorenal differences. The role of female sex in cardiovascular outcomes after AKI merits further investigation.Item The genome of the naturally evolved obesity-prone Ossabaw miniature pig(Elsevier, 2021-09-03) Zhang, Yaolei; Fan, Guangyi; Liu, Xin; Skovgaard, Kerstin; Sturek, Michael; Heegaard, Peter M.H.; Anatomy and Cell Biology, School of MedicineThe feral pigs of Ossabaw Island (USA) have an outstanding propensity to obesity and develop complete metabolic syndrome (MetS) upon prolonged high energy dieting. We now report the first high quality genome of the Ossabaw pig with Contig N50 of ∼6.03 Mb, significantly higher than most other published pig genomes. Genomic comparison to Duroc reveals that variations including SNPs, INDELs and one ∼2 Mb inversion identified in Ossabaw pig may be related to its “thrifty” phenotype. Finally, an important positively selected gene (PSG) was found to be LEPR (leptin receptor) containing two positively selected sites which may lead to pseudogenization of this gene with possible significant effects on obesity and inflammation development. This work provides the first complete mapping of a genome representing a naturally ‘feast and famine’ evolved phenotype of MetS, serving as a blueprint to guide the search for new targets and new biomarkers for obesity comorbidities.Item Heme Synthesis Inhibition Blocks Angiogenesis via Mitochondrial Dysfunction(Elsevier, 2020-07-19) Shetty, Trupti; Sishtla, Kamakshi; Park, Bomina; Repass, Matthew J.; Corson, Timothy W.; Ophthalmology, School of MedicineThe relationship between heme metabolism and angiogenesis is poorly understood. The final synthesis of heme occurs in mitochondria, where ferrochelatase (FECH) inserts Fe2+ into protoporphyrin IX to produce proto-heme IX. We previously showed that FECH inhibition is antiangiogenic in human retinal microvascular endothelial cells (HRECs) and in animal models of ocular neovascularization. In the present study, we sought to understand the mechanism of how FECH and thus heme is involved in endothelial cell function. Mitochondria in endothelial cells had several defects in function after heme inhibition. FECH loss changed the shape and mass of mitochondria and led to significant oxidative stress. Oxidative phosphorylation and mitochondrial Complex IV were decreased in HRECs and in murine retina ex vivo after heme depletion. Supplementation with heme partially rescued phenotypes of FECH blockade. These findings provide an unexpected link between mitochondrial heme metabolism and angiogenesis.