- Browse by Subject
Browsing by Subject "Physical properties"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comprehensive Evaluation of Long-Term Dentin Bond Strength, Water Sorption, Solubility, and Degree of Conversion of Self-Adhesive Resin Composites(Quintessence, 2024-09-17) Yao, Ye; Wu, Di; Cifuentes-Jimenez, Carolina Cecilia; Sano, Hidehiko; Alvarez-Lloret, Pedro; Yamauti, Monica; Tomokiyo, Atsushi; Biomedical and Applied Sciences, School of DentistryPurpose: To evaluate the long-term microtensile bond strength (µTBS) to dentin, water sorption (WSP) and solubility (WSL), and degree of conversion (DC) of self-adhesive resin composites (SACs). Materials and methods: The mid-coronal dentin of human molars was exposed, and teeth were randomly assigned to five groups according to the SACs (n = 10): 1. FIT SA F03 (FIT); 2. Experimental (EXP); 3. Fusio Liquid Dentin (FLD); 4. Vertise Flow (VER); 5. Constic (CON). The µTBS was evaluated after 24 hours (24 h) and 6 months (6 m) storage. A scanning electron microscope examined failure modes and resin-dentin interfaces. The WSP and WSL (n = 5) were evaluated following ISO 4049:2019 specifications, and DC (n = 3) was measured using Raman spectroscopy. The statistical analyses were performed accepting a significance level of p = 0.05. Results: FIT, EXP, and FLD produced significantly higher µTBS median values than VER and CON after 24 h and 6 m (p 0.05). After 6m, the µTBS median of FIT and EXP significantly decreased (p 0.05), while FLD, VER, and CON showed no significant difference (p > 0.05). FLD and CON exhibited lower WSP than FIT, EXP, and VER (p 0.05). FLD presented the lowest (p 0.05), and VER revealed the highest WSL (p 0.05). FIT and EXP showed the highest (p 0.05), and VER demonstrated the lowest DC (p 0.05). Conclusions: Following the present study's design, SACs' bonding performance and physical properties remained restricted. Therefore, the application should be considered cautiously, and further clinical trials are necessary to evaluate their long-term performance.Item Mastication of Nuts under Realistic Eating Conditions: Implications for Energy Balance(MDPI, 2018-06-01) McArthur, Breanna M.; Considine, Robert V.; Mattes, Richard D.; Medicine, School of MedicineThe low digestibility and high satiety effects of nuts have been partly attributed to mastication. This work examines chewing forces and the bolus particle size of nuts (walnuts, almonds, pistachios) varying in physical properties under different conditions (with and without water, juice, sweetened yogurt and plain yogurt) along with satiety sensations and gut hormone concentrations following walnut consumption (whole or butter). In a randomized, cross-over design with 50 adults (25 males, 25 females; Body Mass Index (BMI) 24.7 ± 3.4 kg/m²; age: 18⁻52 years old (y/o), the chewing forces and particle size distribution of chewed nuts were measured under different chewing conditions. Appetite sensations were measured at regular intervals for 3 h after nut intake, and plasma samples were collected for the measurement of glucose, insulin and Glucagon-like peptide-1 (GLP-1). The three nuts displayed different particle sizes at swallowing though no differences in chewing forces were observed. Walnuts with yogurt yielded larger particle sizes than the other treatments. Particle size was not correlated with either food palatability or flavor. Fullness sensations were higher after whole nut than nut butter consumption though there were no significant changes in glucose, insulin, or GLP-1 concentrations under any condition. Changing the conditions at swallowing might influence the release of energy from nuts.