- Browse by Subject
Browsing by Subject "Photons"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Direct Photon-by-Photon Analysis of Time-Resolved Pulsed Excitation Data using Bayesian Nonparametrics(Cell Press, 2020-11-18) Tavakoli, Meysam; Jazani, Sina; Sgouralis, Ioannis; Heo, Wooseok; Ishii, Kunihiko; Tahara, Tahei; Pressé, Steve; Physics, School of ScienceLifetimes of chemical species are typically estimated by either fitting time-correlated single-photon counting (TCSPC) histograms or phasor analysis from time-resolved photon arrivals. While both methods yield lifetimes in a computationally efficient manner, their performance is limited by choices made on the number of distinct chemical species contributing photons. However, the number of species is encoded in the photon arrival times collected for each illuminated spot and need not be set by hand a priori. Here, we propose a direct photon-by-photon analysis of data drawn from pulsed excitation experiments to infer, simultaneously and self-consistently, the number of species and their associated lifetimes from a few thousand photons. We do so by leveraging new mathematical tools within the Bayesian nonparametric. We benchmark our method for both simulated and experimental data for 1-4 species.Item INVESTIGATION OF QUANTUM FLUCTUATIONS IN A NONLINEAR INTERFEROMETER WITH HARMONIC GENERATION AND COHERENT INTERACTION OF LIGHT AND CS ATOMS(2013-08-23) Srinivasan, Prashant; Ou, Zhe-Yu Jeff; Decca, Ricardo; Vemuri, Gautam; Petrache, HoriaIn the first part of this thesis, we investigate the propagation of quantum fluctuations in a nonlinear interferometer comprising under conditions of harmonic generation by computer simulations. This investigation assumes idealized conditions such as lossless and uniform nonlinear media, an ideal cavity and ideal photodetectors. After linearizing wave equations for harmonic generation with a coherent state input, we obtain equations for one dimensional spatial propagation of the mean field and quantum fluctuations for initial conditions set by arbitrary interferometer phase. We discover that fluctuations are de-squeezed in the X and Y quadratures as the interferometer phase is tuned. However, we discover that there is are quadratures P-Q obtained by rotating the X-Y quadratures for which squeezing is improved by factors of 10^9. We present a practical idea to implement rotation of X quadrature fluctuations to the Q quadrature by using an ideal empty optical cavity. Signal-to-Noise ratio of the nonlinear interferometer was calculated and compared with that of a linear interferometer with coherent state input. We calculated a maximum performance improvement of a factor of 60 for a normalized propagation length ζ0 = 3 under ideal conditions. In the second part of this thesis, we investigate experimentalarrangements to transfer atomic coherence from light to cesium atoms. We discuss the experimental arrangement to generate coherence under conditions of electromagnetically induced transparency (EIT). We measure a continuous wave EIT width of 7.18 MHz and present results for pulsed arrangements.