ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Photochemistry"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Photochemistry and Photobiology of the Spore Photoproduct: A 50-Year Journey
    (Wiley Blackwell (Blackwell Publishing), 2015-11) Setlow, Peter; Li, Lei; Department of Chemistry & Chemical Biology, School of Science
    Fifty years ago, a new thymine dimer was discovered as the dominant DNA photolesion in UV-irradiated bacterial spores [Donnellan, J. E. & Setlow R. B. (1965) Science, 149, 308-310], which was later named the spore photoproduct (SP). Formation of SP is due to the unique environment in the spore core that features low hydration levels favoring an A-DNA conformation, high levels of calcium dipicolinate that acts as a photosensitizer, and DNA saturation with small, acid-soluble proteins that alters DNA structure and reduces side reactions. In vitro studies reveal that any of these factors alone can promote SP formation; however, SP formation is usually accompanied by the production of other DNA photolesions. Therefore, the nearly exclusive SP formation in spores is due to the combined effects of these three factors. Spore photoproduct photoreaction is proved to occur via a unique H-atom transfer mechanism between the two involved thymine residues. Successful incorporation of SP into an oligonucleotide has been achieved via organic synthesis, which enables structural studies that reveal minor conformational changes in the SP-containing DNA. Here, we review the progress on SP photochemistry and photobiology in the past 50 years, which indicates a very rich SP photobiology that may exist beyond endospores.
  • Loading...
    Thumbnail Image
    Item
    Recent Advances in Synthetic Methods by Photocatalytic Single-Electron Transfer Chemistry of Pyridine N-Oxides
    (American Chemical Society, 2024) Satheesh, Vanaparthi; Deng, Yongming; Chemistry and Chemical Biology, School of Science
    By adoption of the enabling technology of modern photoredox catalysis and photochemistry, the generation of reactive and versatile pyridine N-oxy radicals can be facilely achieved from single-electron oxidation of pyridine N-oxides. This Synopsis highlights recent methodologies mediated by pyridine N-oxy radicals in developing (1) pyridine N-oxide-based hydrogen atom transfer catalysts for C(sp3)-H functionalizations and (2) β-oxyvinyl radical-mediated cascade reactions. In addition, recent research revealed that direct photoexcitation of pyridine N-oxides allowed for the generation of alkyl carbon radicals from alkylboronic acids.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University