- Browse by Subject
Browsing by Subject "Phospholipids"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Angiopoietin-like protein 4 (ANGPTL4) is an inhibitor of endothelial lipase (EL) while the ANGPTL4/8 complex has reduced EL-inhibitory activity(Elsevier, 2021-08-30) Chen, Yan Q.; Pottanat, Thomas G.; Siegel, Robert W.; Ehsani, Mariam; Qian, Yue-Wei; Konrad, Robert J.; Biology, School of ScienceWe previously demonstrated that angiopoietin-like protein 8 (ANGPTL8) forms ANGPTL3/8 and ANGPTL4/8 complexes that increase with feeding to direct fatty acids (FA) toward adipose tissue through differential modulation of lipoprotein lipase (LPL) activity. Each complex correlated inversely with high density lipoprotein cholesterol (HDL) in control subjects. We thus investigated ANGPTL3/8 and ANGPTL4/8 levels in type 2 diabetes patients, who can present with decreased HDL. While ANGPTL3/8 levels in type 2 diabetes patients were similar to those previously observed in normal controls, ANGPTL4/8 levels were roughly twice as high as those in control subjects. Concentrations of ANGPTL3/8 and ANGPTL4/8 in type 2 diabetes patients were inversely correlated with HDL, with the correlation being significant for ANGPTL4/8. We therefore measured the ability of the various ANGPTL proteins and complexes to inhibit endothelial lipase (EL), the enzyme which hydrolyzes phospholipids (PL) in HDL. While confirming ANGPTL3 as an EL inhibitor, we found that ANGPTL4 was a more potent EL inhibitor than ANGPTL3. Interestingly, we observed that while ANGPTL3/8 had increased EL-inhibitory activity compared to ANGPTL3 alone, ANGPTL4/8 exhibited decreased potency in inhibiting EL compared to ANGPTL4 alone. Together, these results show for the first time that ANGPTL4 is a more potent EL inhibitor than ANGPTL3 and suggest a possible reason for why ANGPTL4/8 levels are correlated inversely with HDL.Item The Effect of Acyl Chain Unsaturation on Phospholipid Bilayer(2010-02-26T17:51:02Z) Soni, Smita Pravin; Wassall, Stephen R.; Petrache, Horia; Kemple, Marvin D.; Rader, Andrew J.Each biological cell is surrounded by a membrane that consists of many different kinds of lipids. The lipids are mainly composed of phospholipids, which form a fluid bilayer that serves as the platform for the function of membrane bound proteins regulating cellular activity. In the research described in this thesis we employed solid state 2H NMR, complemented by DSC (differential scanning calorimetry) and MD (molecular dynamics) simulations, to study the effect of PUFA (polyunsaturated fatty acids) and TFA (trans fatty acids) on molecular organization in protein-free model membranes of controlled composition. These two classes of unsaturated fatty acid incorporate into membrane lipids and have, respectively, a beneficial and harmful impact on health. The aim is to gain insight into the molecular origin of this behavior. DHA (docosahexaenoic acid), which with 6 "natural" cis double bonds is the most highly unsaturated PUFA found in fish oils, and EA (elaidic acid), which with only a single "unnatural" trans double bond is the simplest manmade TFA often found in commercially produced food, were the focus. 2H NMR spectra for [2H31]-N-palmitoylsphingomyelin ([2H31]16:0SM) in SM/16:0-22:6PE (1-palmitoyl-2-docosahexaenoylphosphatidylethanolamine)/cholesterol (1:1:1 mol) mixed membranes were recorded. This system served as our PUFA-containing model. The spectra are consistent with lateral separation into nano-sized (< 20 nm) domains that are SM-rich/cholesterol-rich (raft), characterized by higher chain order, and DHA-rich/cholesterol-poor (non-raft), characterized by lower chain order. The aversion cholesterol has for DHA, as opposed to the affinity cholesterol has for predominantly saturated SM, excludes the sterol from DHA-containing PE-rich domains and DHA from SM-rich/cholesterol-rich domains. It is the formation of highly disordered membrane domains that we hypothesize is responsible, in part, for the diverse health benefits associated with dietary consumption of DHA. 2H NMR spectra for 1-elaidoyl-2-[2H35]stearoylphosphatidylcholine (t18:1-[2H35]18:0PC) and 1-oleoyl-2-[2H35]stearoylphosphatidylcholine (c18:1-[2H35]18:0PC) were recorded to compare membranes with respect to a trans vs. cis ("natural") double bond. The spectra indicate that while a trans double bond produces a smaller deviation from linear conformation than a cis double bond, membrane order is decreased by a comparable amount because the energy barrier to rotation about the C-C single bonds either side of a trans or cis double bond is reduced. Although EA adopts a conformation somewhat resembling a saturated fatty acid, the TFA is almost as disordered as its cis counterpart oleic acid (OA). We speculate that EA could be mistaken for a saturated fatty acid and infiltrate lipid rafts to disrupt the high order therein that is necessary for the function of signaling proteins.Item Growth and phospholipid metabolism of Lineola longa(1973) Baldwin, William W.Item Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry(Springer, 2010) Dill, Allison L.; Eberlin, Livia S.; Zheng, Cheng; Costa, Anthony B.; Ifa, Demian R.; Cheng, Liang; Masterson, Timothy A.; Koch, Michael O.; Vitek, Olga; Cooks, R. Graham; Pathology and Laboratory Medicine, School of MedicineDesorption electrospray ionization (DESI) mass spectrometry (MS) was used in an imaging mode to interrogate the lipid profiles of thin tissue sections of 11 sample pairs of human papillary renal cell carcinoma (RCC) and adjacent normal tissue and nine sample pairs of clear cell RCC and adjacent normal tissue. DESI-MS images showing the spatial distributions of particular glycerophospholipids (GPs) and free fatty acids in the negative ion mode were compared to serial tissue sections stained with hematoxylin and eosin (H&E). Increased absolute intensities as well as changes in relative abundance were seen for particular compounds in the tumor regions of the samples. Multivariate statistical analysis using orthogonal projection to latent structures treated partial least square discriminate analysis (PLS-DA) was used for visualization and classification of the tissue pairs using the full mass spectra as predictors. PLS-DA successfully distinguished tumor from normal tissue for both papillary and clear cell RCC with misclassification rates obtained from the validation set of 14.3% and 7.8%, respectively. It was also used to distinguish papillary and clear cell RCC from each other and from the combined normal tissues with a reasonable misclassification rate of 23%, as determined from the validation set. Overall DESI-MS imaging combined with multivariate statistical analysis shows promise as a molecular pathology technique for diagnosing cancerous and normal tissue on the basis of GP profiles.Item Near-Field Investigations of the Anisotropic Properties of Supported Lipid Bilayers(2012-07-24) Johnson, Merrell A.; Decca, Ricardo; Rader, Andrew J.; Ritchie, Ken; Petrache, Horia; Wassall, StephenThe details of Polarization Modulation Near-Field Scanning Optical Microscopy (PM-NSOM) are presented. How to properly calibrate and align the system is also introduced. A measurement of Muscovite crystal is used to display the capabilities of the setup. Measurements of supported Lβʹ 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers are presented, emphasizing how it was tooled in exploiting the anisotropic nature of the acyl chains. A discussion of how the effective retardance (ΔS = 2π( n_e-n_o )t/λ) and the direction of the projection of the acyl chains (θ) are measured simultaneously is given, (where t is the thickness of the bilayer and λ is the wavelength of light used). It is shown from ΔS the birefringence (ne-no) of the bilayer is determined, by assuming the acyl chain tilt with respect to the membrane's normal to be ϕ ≈ 32. Time varying experiments show lateral diffusions of ~ 2 x 10-12 cm2/s. Temperature controlled PM-NSOM is shown to be a viable way to determine the main phase transition temperature (Tm) for going from the gel Lβʹ to liquid disorder Lα state of supported DPPC bilayers. A change of ΔS ~ (3.8 +/- 0.3 mrad) at the main phase transition temperature Tm (≈41^o C) is observed. This agrees well with previous values of (ne-no) and translates to an assumed <ϕ> ~ 32^o when T < Tm and 0^o when T > Tm. Evidence of supper heating and supper cooling will be presented, along with a discussion of the fluctuations that occur around Tm. Finally it is shown how physical parameters such as the polarizability are extracted from the data. Values of the transverse (αt) and longitudinal (αl) polarizabilites of the acyl chains are shown to be, αt = 44.2 Å3 and αl = 94.4 Å3, which correspond well with the theoretical values of a single palmitic acid (C16) αt = 25.14 Å3 and αl = 45.8 Å3.Item Phosphatidylethanolamines Are Associated with Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Adults and Induce Liver Cell Metabolic Perturbations and Hepatic Stellate Cell Activation(MDPI, 2023-01-05) Shama, Samaa; Jang, Hyejeong; Wang, Xiaokun; Zhang, Yang; Shahin, Nancy Nabil; Motawi, Tarek Kamal; Kim, Seongho; Gawrieh, Samer; Liu, Wanqing; Medicine, School of MedicinePathogenesis roles of phospholipids (PLs) in nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This study investigated the role of PLs in the progression of NAFLD among obese individuals via studying the alterations in serum PL composition throughout the spectrum of disease progression and evaluating the effects of specific phosphatidylethanolamines (PEs) on FLD development in vitro. A total of 203 obese subjects, who were undergoing bariatric surgery, were included in this study. They were histologically classified into 80 controls (C) with normal liver histology, 93 patients with simple hepatic steatosis (SS), 16 with borderline nonalcoholic steatohepatitis (B-NASH) and 14 with progressive NASH (NASH). Serum PLs were profiled by automated electrospray ionization tandem mass spectrometry (ESI-MS/MS). HepG2 (hepatoma cells) and LX2 (immortalized hepatic stellate cells or HSCs) were used to explore the roles of PL in NAFLD/NASH development. Several PLs and their relative ratios were significantly associated with NAFLD progression, especially those involving PE. Incubation of HepG2 cells with two phosphatidylethanolamines (PEs), PE (34:1) and PE (36:2), resulted in significant inhibition of cell proliferation, reduction of mitochondrial mass and membrane potential, induction of lipid accumulation and mitochondrial ROS production. Meanwhile, treatment of LX2 cells with both PEs markedly increased cell activation and migration. These effects were associated with a significant change in the expression levels of genes involved in lipogenesis, lipid oxidation, autophagy, apoptosis, inflammation, and fibrosis. Thus, our study demonstrated that elevated level of PEs increases susceptibility to the disease progression of obesity associated NAFLD, likely through a causal cascade of impacts on the function of different liver cells.Item Restoring mitochondrial cardiolipin homeostasis reduces cell death and promotes recovery after spinal cord injury(Springer Nature, 2022-12-20) Liu, Nai-Kui; Deng, Ling-Xiao; Wang, Miao; Lu, Qing-Bo; Wang, Chunyan; Wu, Xiangbing; Wu, Wei; Wang, Ying; Qu, Wenrui; Han, Qi; Xia, Yongzhi; Ravenscraft, Baylen; Li, Jin-Lian; You, Si-Wei; Wipf, Peter; Han, Xianlin; Xu, Xiao-Ming; Neurological Surgery, School of MedicineAlterations in phospholipids have long been associated with spinal cord injury (SCI). However, their specific roles and signaling cascades in mediating cell death and tissue repair remain unclear. Here we investigated whether alterations of cardiolipin (CL), a family of mitochondrion-specific phospholipids, play a crucial role in mitochondrial dysfunction and neuronal death following SCI. Lipidomic analysis was used to determine the profile of CL alteration in the adult rat spinal cord following a moderate contusive SCI at the 10th thoracic (T10) level. Cellular, molecular, and genetic assessments were performed to determine whether CL alterations mediate mitochondrial dysfunction and neuronal death after SCI, and, if so, whether reversing CL alteration leads to neuroprotection after SCI. Using lipidomic analysis, we uncovered CL alterations at an early stage of SCI. Over 50 distinct CL species were identified, of which 50% showed significantly decreased abundance after SCI. The decreased CL species contained mainly polyunsaturated fatty acids that are highly susceptible to peroxidation. In parallel, 4-HNE, a lipid peroxidation marker, significantly increased after SCI. We found that mitochondrial oxidative stress not only induced CL oxidation, but also resulted in CL loss by activating cPLA2 to hydrolyze CL. CL alterations induced mitochondrial dysfunction and neuronal death. Remarkably, pharmacologic inhibition of CL alterations with XJB-5-131, a novel mitochondria-targeted electron and reactive oxygen species scavenger, reduced cell death, tissue damage and ameliorated motor deficits after SCI in adult rats. These findings suggest that CL alteration could be a novel mechanism that mediates injury-induced neuronal death, and a potential therapeutic target for ameliorating secondary SCI.Item The role of acid sphingomyelinase in autophagy(2014-07-11) Justice, Matthew Jose; Petrache, Irina; Blum, Janice Sherry, 1957-; Wek, Ronald C.Autophagy is a conserved cellular process that involves sequestration and degradation of cytosolic contents. The cell can engulf autophagic cargo (lipids, long-lived proteins, protein aggregates, and pathogens) through a double bound membrane called an autophagosome that fuses with a lysosome where hydrolases then degrade these contents. This process is one of the main defenses against starvation and is imperative for newborns at birth. Research on this process has increased exponentially in the last decade since its discovery almost a half a century ago. It has been found that autophagy is an important process in many diseases, continues to be at the forefront of research, and is clearly not fully understood. Our preliminary cell culture data in endothelial and epithelial cells show that a blockade of the de novo ceramide synthesis pathway, during treatment with an autophagy stimulus (cigarette smoke extract exposure), does not result in any reduction in autophagy or autophagic flux. Conversely, when acid sphingomyelinase (ASM) is pharmacologically inhibited, which prevents the generation of ceramide from sphingomyelin in an acidic environment, a profound increase in autophagy is observed. In this work, we hypothesize that (ASM) is an endogenous inhibitor of autophagy. ASM has two forms, a secreted form and a lysosomal form. N-terminal processing in the Golgi determines its cellular fate. In the lysosomal form, the phosphodiesterase is bound in the lysosomal membrane. The pharmacological inhibition mechanism is to release ASM from the membrane and allow other hydrolases to actively degrade the enzyme which, in turn, decreases the activity of ASM. This suggests that either the activity of ASM is a regulator of autophagy or that the presence of ASM, activity aside, is required for the lysosomal nutrient sensing machinery (LYNUS) to function properly. Here, we show that ASM is, in fact, an endogenous inhibitor of autophagy in vitro. The phosphorylation status of P70 S6k, a downstream effector of mammalian target of rapamycin (mTOR), which is part of the LYNUS, shows that dissociation of ASM from the membrane regulates mTOR and disturbs the LYNUS in such a manner as to signal autophagy.Item α-Tocopherol Is Well Designed to Protect Polyunsaturated Phospholipids: MD Simulations.(Elsevier, 2015-10-20) Leng, Xiaoling; Kinnun, Jacob J.; Marquardt, Drew; Ghefli, Mikel; Kučerka, Norbert; Katsaras, John; Atkinson, Jeffrey; Harroun, Thad A.; Feller, Scott E.; Wassall, Stephen R.; Department of Physics, School of ScienceThe presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state 2H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface.