ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Phosphoglycerate dehydrogenase"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A metabolic shift to the serine pathway induced by lipids fosters epigenetic reprogramming in nontransformed breast cells
    (American Association for the Advancement of Science, 2025) Eduardo, Mariana Bustamante; Cottone, Gannon; McCloskey, Curtis W.; Liu, Shiyu; Palma, Flavio R.; Zappia, Maria Paula; Islam, Abul B. M. M. K.; Gao, Peng; Setya, Joel; Dennis, Saya; Gao, Hongyu; Zhang, Qian; Xuei, Xiaoling; Luo, Yuan; Locasale, Jason; Bonini, Marcelo G.; Khokha, Rama; Frolov, Maxim V.; Benevolenskaya, Elizaveta V.; Chandel, Navdeep S.; Khan, Seema A.; Clare, Susan E.; Medical and Molecular Genetics, School of Medicine
    Lipid metabolism and the serine, one-carbon, glycine (SOG) and methionine pathways are independently and significantly correlated with estrogen receptor-negative breast cancer (ERneg BC). Here, we propose a link between lipid metabolism and ERneg BC through phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the de novo serine pathway. We demonstrate that the metabolism of the paradigmatic medium-chain fatty acid octanoic acid leads to a metabolic shift toward the SOG and methionine pathways. PHGDH plays a role in both the forward direction, contributing to the production of S-adenosylmethionine, and the reverse direction, generating the oncometabolite 2-hydroxyglutarate, leading to epigenomic reprogramming and phenotypic plasticity. The methionine cycle is closely linked to the transsulfuration pathway. Consequently, we observe that the shift increases the antioxidant glutathione, which mitigates reactive oxygen species (ROS), enabling survival of a subset of cells that have undergone DNA damage. These metabolic changes contribute to several hallmarks of cancer.
  • Loading...
    Thumbnail Image
    Item
    Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma
    (Springer Nature, 1988) Snell, K.; Natsumedal, Y.; Eble, J. N.; Glover, J. L.; Weber, G.; Surgery, School of Medicine
    The activities of 3-phosphoglycerate dehydrogenase, an enzyme of serine biosynthesis, and serine hydroxymethyltransferase, serine dehydratase and serine aminotransferase, which are competing enzymes of serine utilization, were assayed in human colon carcinomas from patients and in transplantable rat sarcomas. Serine dehydratase and serine aminotransferase activities were absent, whereas 3-phosphoglycerate dehydrogenase and serine hydroxymethyltransferase activities were markedly increased in both tumour types. Serine hydroxymethyltransferase catalyses the formation of glycine and methylene tetrahydrofolate which are important precursors for nucleotide biosynthesis. The observed enzymic imbalance in these tumours ensures that an increased capacity for the synthesis of serine is coupled to its utilisation for nucleotide biosynthesis as a part of the biochemical commitment to cellular replication in cancer cells. That this pattern is found in sarcomas and carcinomas, and in tumours of human and rodent origin, signifies its universal importance for the biochemistry of the cancer cell and singles it out as a potential target site for anti-cancer chemotherapy.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University