- Browse by Subject
Browsing by Subject "Phosphatases"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Disruption-Compensation (DisCo) Network Analysis of the RNA Polymerase II Interactome(2022-08) Burriss, Katlyn Hughes; Mosley, Amber L.; Georgiadis, Millie M.; Goebl, Mark G.; Turchi, John J.During RNA Polymerase II (RNAPII) transcription, a dynamic network of protein-protein interactions (PPIs) coordinates the regulation of initiation, elongation, and termination. Taking a proteomics approach to study RNAPII transcription can offer a comprehensive view of the regulatory mechanisms mediated by PPIs within the transcription complex. However, traditional affinity purification mass spectrometry (APMS) methods have struggled to quantitatively capture many of the more dynamic, less abundant interactions within the elaborate RNAPII transcription interactome. To combat this challenge, we have developed and optimized a quantitative AP-MS based method termed Disruption-Compensation (DisCo) Network Analysis that we coupled with Tandem Mass Tag (TMT) labeling. In this application, TMT-DisCo was applied to investigate the PPIs that regulate RNAPII transcription. In the first study, TMT-DisCo network analysis was used to analyze how perturbation of subunits of four major transcription elongation regulators —Spt6, Spt5 (DSIF), Cdc73 (PAF-Complex), and Spt16 (FACT)— affect the RNAPII PPI network. TMT-DisCo was able to measure specific alterations of RNAPII PPIs that provide insight into the normal functions of Spt6/Spt5/Cdc73/Spt16 proteins within the RNAPII elongation complex. The observed changes in the RNAPII interactome also reveal the distinct mechanisms behind the phenotypes of each perturbation. Application of TMTDisCo provides in vivo, protein-level insights into synthetic genetic interaction data and in vitro structural data, aiding in the understanding of how dynamic PPIs regulate complex processes. The second study focused on the essential RNAPII CTD phosphatases, Ssu72 and Fcp1. TMT-DisCo captures how the ssu72-2 allele affects the ability of RNAPII to proceed through elongation, resulting in more arrested RNAPII that requires proteasomal degradation. Reduction of Ssu72 phosphatase activity shifts cells away from RNAPII reinitiation/ recycling and toward de novo expression and newly assembled RNAPII, aided by chaperones. RNAPII in fcp1-1 cells was observed to increase in interaction with the 26S proteasome, as well as TFIID and mRNA capping enzyme. These data support a model of the nuclear proteasome functioning as a chaperone during transcription initiation, as the fcp1-1 allele leads to inefficient formation of a pre-initiation complex with a hyperphosphorylated RNAPII CTD.Item Impaired malin expression and interaction with partner proteins in Lafora disease(Elsevier, 2024) Skurat, Alexander V.; Segvich, Dyann M.; Contreras, Christopher J.; Hu, Yueh-Chiang; Hurley, Thomas D.; DePaoli-Roach, Anna A.; Roach, Peter J.; Biochemistry and Molecular Biology, School of MedicineLafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.Item Mechanisms of recruitment of the CTD phosphatase Rtr1 to RNA polymerase II(2012-10-19) Berna, Michael J., Sr.; Goebl, Mark G.; Mosley, Amber L.; Hurley, Thomas D., 1961-The C-terminal domain (CTD) of the RNA polymerase II (RNAPII) subunit Rpb1 must exist in a hypophosphorylated state prior to forming a competent transcription initiation complex. However, during transcription, specific kinases and phosphatases act on the RNAPII CTD to regulate its phosphorylation state, which serves to recruit sequence-specific and general transcription factors at the appropriate stage of transcription. A key phosphatase involved in this process, Rtr1 (Regulator of Transcription 1), was shown to regulate a key step important for transcription elongation and termination. Although the role that Rtr1 plays in regulating RNAPII transcription has been described, the mechanism involved in the recruitment of Rtr1 to RNAPII during transcription has not been elucidated in yeast. Consequently, the present work utilized both affinity purification schemes in Saccharomyces cerevisiae and mass spectrometry to identify key Rtr1-interacting proteins and post-translational modifications that potentially play a role in recruiting Rtr1 to RNAPII. In addition to RNAPII subunits, which were the most consistently enriched Rtr1-interacting proteins, seven proteins were identified that are potentially involved in Rtr1 recruitment. These included PAF complex subunits (Cdc73, Ctr9, Leo1), the heat shock protein Hsc82, the GTPase Npa3, the ATPase Rpt6, and Spn1. Indirect evidence was also uncovered that implicates that the CTDK-I complex, a kinase involved in RNAPII CTD phosphorylation, is important in facilitating interactions between Rtr1, RNAPII, and select transcription factors. Additionally, a putative phosphorylation site was identified on Ser217 of Rtr1 that may also play a role in its recruitment to RNAPII during transcription.