- Browse by Subject
Browsing by Subject "Phenotype association"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item SCIPAC: quantitative estimation of cell-phenotype associations(Springer Nature, 2024-05-13) Gan, Dailin; Zhu, Yini; Lu, Xin; Li, Jun; Medicine, School of MedicineNumerous algorithms have been proposed to identify cell types in single-cell RNA sequencing data, yet a fundamental problem remains: determining associations between cells and phenotypes such as cancer. We develop SCIPAC, the first algorithm that quantitatively estimates the association between each cell in single-cell data and a phenotype. SCIPAC also provides a p-value for each association and applies to data with virtually any type of phenotype. We demonstrate SCIPAC's accuracy in simulated data. On four real cancerous or noncancerous datasets, insights from SCIPAC help interpret the data and generate new hypotheses. SCIPAC requires minimum tuning and is computationally very fast.