- Browse by Subject
Browsing by Subject "Pharmacogenomic Testing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Multisite evaluation of institutional processes and implementation determinants for pharmacogenetic testing to guide antidepressant therapy.(Wiley, 2022-02) Tuteja, Sony; Salloum, Ramzi G.; Elchynski, Amanda L.; Smith, D. Max; Rowe, Elizabeth; Blake, Kathryn V.; Limdi, Nita A.; Aquilante, Christina L.; Bates, Jill; Beitelshees, Amber L.; Cipriani, Amber; Duong, Benjamin Q.; Empey, Philip E.; Formea, Christine M.; Hicks, J. Kevin; Mroz, Pawel; Oslin, David; Pasternak, Amy L.; Petry, Natasha; Ramsey, Allyson; Swain, Sandra M.; Ward, Kristen M.; Wiisanen, Kristin; Skaar, Todd C.; Van Driest, Sara L.; Cavallari, Larisa H.; Bishop, Jeffrey R.There is growing interest in utilizing pharmacogenetic (PGx) testing to guide antidepressant use, but there is lack of clarity on how to implement testing into clinical practice. We administered two surveys at 17 sites that had implemented or were in the process of implementing PGx testing for antidepressants. Survey 1 collected data on the process and logistics of testing. Survey 2 asked sites to rank the importance of Consolidated Framework for Implementation Research (CFIR) constructs using best-worst scaling choice experiments. Of the 17 sites, 13 had implemented testing and four were in the planning stage. Thirteen offered testing in the outpatient setting, and nine in both outpatient/inpatient settings. PGx tests were mainly ordered by psychiatry (92%) and primary care (69%) providers. CYP2C19 and CYP2D6 were the most commonly tested genes. The justification for antidepressants selected for PGx guidance was based on Clinical Pharmacogenetics Implementation Consortium guidelines (94%) and US Food and Drug Administration (FDA; 75.6%) guidance. Both institutional (53%) and commercial laboratories (53%) were used for testing. Sites varied on the methods for returning results to providers and patients. Sites were consistent in ranking CFIR constructs and identified patient needs/resources, leadership engagement, intervention knowledge/beliefs, evidence strength and quality, and the identification of champions as most important for implementation. Sites deployed similar implementation strategies and measured similar outcomes. The process of implementing PGx testing to guide antidepressant therapy varied across sites, but key drivers for successful implementation were similar and may help guide other institutions interested in providing PGx-guided pharmacotherapy for antidepressant management.Item Tracheal Aspirate as an Alternative Biologic Sample for Pharmacogenomics Testing in Mechanically Ventilated Pediatric Patients(Wiley, 2021-03) Hargreaves, Katherine A.; Pratt, Victoria M.; Medeiros, Elizabeth B.; Lynnes, Ty C.; Granfield, Caitlin A.; Skaar, Todd C.; Iwata-Otsubo, Aiko; Tillman, Emma M.; Medical and Molecular Genetics, School of MedicinePatients in the pediatric intensive care unit are exposed to multiple medications and are at high risk for adverse drug reactions. Pharmacogenomic (PGx) testing could help decrease their risk of adverse reactions. Although whole blood is preferred for PGx testing, blood volume in this population is often limited. However, for patients on mechanical ventilation, tracheal secretions are abundant, frequently suctioned, and discarded. Thus, the aim of this pilot study was to determine if tracheal aspirates could be used as a source of human genomic DNA for PGx testing. We successfully extracted DNA from tracheal secretions of all 23 patients in the study. The samples were successfully genotyped for 10 clinically actionable single nucleotide variants across 3 cytochrome P450 genes (CYP2D6, CYP2C19, and CYP3A5). Using DNA from whole blood samples in 11 of the patients, we confirmed the accuracy of the genotyping with 100% concordance. Therefore, our results support the use of tracheal aspirates from mechanically ventilated children as an adequate biospecimen for clinical genetic testing.