- Browse by Subject
Browsing by Subject "Petrology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Exploring Competing Theories of Viscous Emulsion and Fractional Crystallization of the Impact Melt that Formed the Sudbury Igneous Complex(2023-01) Horman, Alexandra Rose; Macris, Catherine A.; Barth, Andrew P.; Gilhooly, William P., III.The Sudbury Igneous Complex (SIC) in Sudbury, Canada is a remnant geologic structure from a meteor impact that occurred ~1.85 Ga. The impact produced ~30,000 km3 of superheated melt which reached >2200 °C. The existing SIC is composed of three compositionally distinct layers, norite, quartz gabbro, and granophyre, which stretch the entire lateral distance of the complex. The presentation of layers in the SIC is unusual for impact melts, and the crystallization path has been debated by scientists. The SIC differs from more common layered mafic complexes because of its intermediate composition, crustal isotopic signature, and large volume of granophyre. This thesis is an investigation of some of the main theories surrounding the SIC and how it crystallized to form such distinct layers. There are two main theories of how the SIC formed its compositionally distinct layers: (1) fractional crystallization and (2) separation by viscous emulsion. The viscous emulsion theory involves isolated droplets of melt separating from the surrounding melt body due to differences in viscosity and density, similar to an emulsion of oil and water. In this study, viscous emulsion theory was investigated experimentally by heating samples of rock from the SIC to the extreme temperatures associated with the Sudbury impact, and then analyzing the cooled experimental products using electron microscopy to determine if there was evidence of textures that would be consistent with expectations for a viscous emulsion. Fractional crystallization was investigated by modeling using the vii software EasyMELTS to evaluate compositions from the SIC to estimate how they would crystallize according to the temperature, pressure, and other properties of the melt. There was no textural evidence of a viscous emulsion found in the experimental products. The models produced compositions similar to what is seen in the SIC but had limited application to fractional crystallization theory.Item A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc(Nature, 2015-09) Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley III, Frank J.; van der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui; Department of Earth Sciences, School of ScienceThe initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence of dense lithosphere along faults adjacent to buoyant lithosphere, would result in extension and magmatism. The rock record of subduction initiation is typically obscured by younger deposits, so evaluating these possibilities has proved elusive. Here we analyse the geochemical characteristics of igneous basement rocks and overlying sediments, sampled from the Amami Sankaku Basin in the northwest Philippine Sea. The uppermost basement rocks are areally widespread and supplied via dykes. They are similar in composition and age—as constrained by the biostratigraphy of the overlying sediments—to the 52–48-million-year-old basalts in the adjacent Izu–Bonin–Mariana fore-arc. The geochemical characteristics of the basement lavas indicate that a component of subducted lithosphere was involved in their genesis, and the lavas were derived from mantle source rocks that were more melt-depleted than those tapped at mid-ocean ridges. We propose that the basement lavas formed during the inception of Izu–Bonin–Mariana subduction in a mode consistent with the spontaneous initiation of subduction.