- Browse by Subject
Browsing by Subject "Perivascular adipose tissue"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Comparative Quantification of Arterial Lipid by Intravascular Photoacoustic-Ultrasound Imaging and Near-Infrared Spectroscopy-Intravascular Ultrasound(Springer, 2018-11-28) Kole, Ayeeshik; Cao, Yingchun; Hui, Jie; Bolad, Islam A.; Alloosh, Mouhamad; Cheng, Ji-Xin; Sturek, Michael; Cellular and Integrative Physiology, School of MedicineIntravascular photoacoustic-ultrasound (IVPA-US) imaging and near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS) are two hybrid modalities that detect arterial lipid, with comparison necessary to understand the relative advantages of each. We performed in vivo and ex vivo IVPA-US imaging of the iliac arteries of Ossabaw swine with metabolic syndrome (MetS) and lean swine to investigate sensitivity for early-stage atherosclerosis. We repeated imaging ex vivo with NIRS-IVUS for comparison to IVPA-US and histology. Both modalities showed significantly greater lipid in MetS vs. lean swine, but only IVPA-US localized the lipid as perivascular. To investigate late-stage atherosclerosis, we performed ex vivo IVPA-US imaging of a human coronary artery with comparison to NIRS-IVUS and histology. Two advanced fibroatheromas were identified, with agreement between IVPA-measured lipid area and NIRS-derived lipid content. As confirmed histologically, IVPA-US has sensitivity to detect lipid content similar to NIRS-IVUS and provides additional depth resolution, enabling quantification and localization of lipid cores within plaques.Item Contribution of Perivascular Adipose Tissue to Coronary Vascular Dysfunction(2011-03-10) Payne, Gregory Allen; Tune, Johnathan D.; Bohlen, H. Glenn; Considine, Robert V.; Sturek, Michael StephenThe epidemic of obesity and associated cardiovascular complications continues to grow at an alarming rate. Currently, obesity is thought to initiate a state of chronic inflammation, which if unresolved potentially causes cardiovascular dysfunction and disease. Although poorly understood, release of inflammatory mediators and other cytokines from adipose tissue (adipocytokines) has been proposed to be the molecular link between obesity and coronary artery disease. Furthermore, the anatomic location of adipose has been increasingly recognized as a potential contributor to vascular disease. Importantly, the development of coronary atherosclerosis, a key component of heart disease, is typically found in segments of coronary arteries surrounded by perivascular adipose tissue. Accordingly, the goal of this project was to determine how perivascular adipose tissue affects coronary artery function and elucidate the critical mechanisms involved. Initial studies assessing arterial function were conducted with and without perivascular adipose tissue. Preliminary results demonstrated that factors released by perivascular adipose tissue effectively impaired coronary endothelial function both in vitro and in vivo. This observation was determined to be caused by direct inhibition of nitric oxide synthase (NOS), a critical enzyme for the production nitric oxide. Attenuation of endothelium-dependent vasodilation was independent of changes in superoxide production, smooth muscle response, or peroxide-mediated vasodilation. Additional studies revealed that perivascular adipose-induced impairment of NOS was due to increased inhibitory regulation by the β isoform of protein kinase C (PKC-β). Specifically, perivascular adipose-derived factors caused site specific phosphorylation of nitric oxide synthase at Thr-495. Additional experiments investigated how perivascular adipose-derived factors contributed to coronary artery disease in an animal model of obesity. Results from these studies indicated that perivascular adipose-derived leptin markedly exacerbated underlying endothelial dysfunction, and significantly contributed to coronary endothelial dysfunction through a PKC-β dependent mechanism. Findings from this project confirm epicardial perivascular adipose tissue as a local source of harmful adipocytokines. In addition, perivascular adipose-derived leptin was demonstrated to be a critical mediator of coronary vascular dysfunction in obesity. Together, the results strongly suggest that perivascular adipose tissue is a key contributor to coronary artery disease in obesity.Item Perivascular adipose tissue and inflammation(Wiley, 2016-03) Goodwill, Adam G.; Department of Cellular & Integrative Physiology, IU School of MedicineComment in: Response to "Perivascular adipose tissue and inflammation. [Obesity (Silver Spring). 2016] Comment on: Disconnect between adipose tissue inflammation and cardiometabolic dysfunction in Ossabaw pigs. [Obesity (Silver Spring). 2015]