- Browse by Subject
Browsing by Subject "Peptides"
Now showing 1 - 10 of 24
Results Per Page
Sort Options
Item Changes in Bone Quality after Treatment with Etelcalcetide(Wolters Kluwer, 2023) Khairallah, Pascale; Cherasard, Jenna; Sung, Joshua; Agarwal, Sanchita; Aponte, Maria Alejandra; Bucovsky, Mariana; Fusaro, Maria; Silberzweig, Jeffrey; Frumkin, Gail N.; El Hachem, Karim; Schulman, Linda; McMahon, Donald; Allen, Matthew R.; Metzger, Corinne E.; Surowiec, Rachel K.; Wallace, Joseph; Nickolas, Thomas L.; Anatomy, Cell Biology and Physiology, School of MedicineIntroduction: Secondary hyperparathyroidism is associated with osteoporosis and fractures. Etelcalcetide is an intravenous calcimimetic for the control of hyperparathyroidism in patients on hemodialysis. Effects of etelcalcetide on the skeleton are unknown. Methods: In a single-arm, open-label, 36-week prospective trial, we hypothesized that etelcalcetide improves bone quality and strength without damaging bone-tissue quality. Participants were 18 years or older, on hemodialysis ≥1 year, without calcimimetic exposure within 12 weeks of enrollment. We measured pretreatment and post-treatment areal bone mineral density by dual-energy X-ray absorptiometry, central skeleton trabecular microarchitecture by trabecular bone score, and peripheral skeleton volumetric bone density, geometry, microarchitecture, and estimated strength by high-resolution peripheral quantitative computed tomography. Bone-tissue quality was assessed using quadruple-label bone biopsy in a subset of patients. Paired t tests were used in our analysis. Results: Twenty-two participants were enrolled; 13 completed follow-up (mean±SD age 51±14 years, 53% male, and 15% White). Five underwent bone biopsy (mean±SD age 52±16 years and 80% female). Over 36 weeks, parathyroid hormone levels declined 67%±9% ( P < 0.001); areal bone mineral density at the spine, femoral neck, and total hip increased 3%±1%, 7%±2%, and 3%±1%, respectively ( P < 0.05); spine trabecular bone score increased 10%±2% ( P < 0.001); and radius stiffness and failure load trended to a 7%±4% ( P = 0.05) and 6%±4% increase ( P = 0.06), respectively. Bone biopsy demonstrated a decreased bone formation rate (mean difference -25±4 µ m 3 / µ m 2 per year; P < 0.01). Conclusions: Treatment with etelcalcetide for 36 weeks was associated with improvements in central skeleton areal bone mineral density and trabecular quality and lowered bone turnover without affecting bone material properties.Item Chemical synthesis of phosphoserine-containing peptides(1990) Wang, AiqunItem Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry(American Chemical Society, 2024-06-04) Jiang, Yuming; Rex, Devasahayam Arokia Balaya; Schuster, Dina; Neely, Benjamin A.; Rosano, Germán L.; Volkmar, Norbert; Momenzadeh, Amanda; Peters-Clarke, Trenton M.; Egbert, Susan B.; Kreimer, Simion; Doud, Emma H.; Crook, Oliver M.; Yadav, Amit Kumar; Vanuopadath, Muralidharan; Hegeman, Adrian D.; Mayta, Martín L.; Duboff, Anna G.; Riley, Nicholas M.; Moritz, Robert L.; Meyer, Jesse G.; Biochemistry and Molecular Biology, School of MedicineProteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.Item Copper(II) ion interaction with sperm whale metmyoglobin and model peptide systems(1967) Hartzell, Charles RossItem Designing Visible Light-Cured Thiol-Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells(Wiley Blackwell (John Wiley & Sons), 2016-04) Lin, Tsai-Yu; Bragg, John C.; Lin, Chien-Chi; Department of Biomedical Engineering, School of Engineering and TechnologyVarious polymerization mechanisms have been developed to prepare peptide-immobilized poly(ethylene glycol) (PEG) hydrogels, a class of biomaterials suitable for studying cell biology in vitro. Here, a visible light mediated thiol-acrylate photopolymerization scheme is reported to synthesize dually degradable PEG-peptide hydrogels with controllable crosslinking and degradability. The influence of immobilized monothiol pendant peptide is systematically evaluated on the crosslinking of these hydrogels. Further, methods are proposed to modulate hydrogel crosslinking, including adjusting concentration of comonomer or altering the design of multifunctional peptide crosslinker. Due to the formation of thioether ester bonds, these hydrogels are hydrolytically degradable. If the dithiol peptide linkers used are susceptible to protease cleavage, these thiol-acrylate hydrogels can be designed to undergo partial proteolysis. The differences between linear and multiarm PEG-acrylate (i.e., PEGDA vs PEG4A) are also evaluated. Finally, the use of the mixed-mode thiol-acrylate PEG4A-peptide hydrogels is explored for in situ encapsulation of hepatocellular carcinoma cells (Huh7). The effects of matrix stiffness and integrin binding motif (e.g., RGDS) on Huh7 cell growth and HIPPO pathway activation are studied using PEG4A-peptide hydrogels. This visible light poly-merized thiol-acrylate hydrogel system represents an alternative to existing light-cured hydrogel platforms and shall be useful in many biomedical applications.Item The development of a DesArg⁹ bradykinin radioimmunoassay(1982) Moreland, PembrokeItem Diverse Levels of Sequence Selectivity and Catalytic Efficiency of Protein-Tyrosine Phosphatases(American Chemical Society, 2014-01-21) Selner, Nicholas G.; Luechapanichkul, Rinrada; Chen, Xianwen; Neel, Benjamin G.; Zhang, Zhong-Yin; Knapp, Stefan; Bell, Charles E.; Pei, Dehua; Department of Biochemistry & Molecular Biology, IU School of MedicineThe sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences, but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >105-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >105-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3–18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A co-crystal structure of PTP1B bound with a nephrin pY1193 peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.Item Evolution of Trefoil Factor(s): Genetic and Spatio-Temporal Expression of Trefoil Factor 2 in the Chicken (Gallus Gallus Domesticus)(Public Library of Science, 2011) Jiang, Zhengyu; Lossie, Amy C.; Applegate, Todd J.; Medicine, School of MedicineTrefoil factors are essential healing initiators participating in mucosal reconstitution and tissue morphogenesis, especially on the surfaces of the gastrointestinal tract. This family has been cloned and characterized predominantly from mammals and amphibians. Avian species ingest stone and grit to help digest food, which may expose their gut to severe physical conditions. To further the understanding of the function of the TFF gene family across species, we undertook this research to clone, sequence, and characterize the spatio-temporal expression patterns of chicken TFF2 (ChTFF2) cDNA. Bioinformatics analysis of the promoter region and deduced amino acid sequence demonstrated that ChTFF2 contained unique characteristics; specifically the chicken promoter has multiple start sites and the protein contains a series of Lys-Lys-Val repeats. Unlike mammals, where TFF2 is detected primarily in the stomach, and occasionally in the proximal duodenum, chicken TFF2 transcripts are found throughout the gastrointestinal tract, with major expression sites in the glandular and muscular stomach as well as evident expression in the colon, small intestine, cecal tonsil and crop. Temporal analysis of intestinal ChTFF2 transcripts by quantitative RT-PCR showed high levels in embryos and a trend of constant expression during embryonic and post-hatch development, with a reduction occurring around hatch. Phylogenetic analysis highlighted the conservation of TFF proteins and functional divergence of trefoil domains, which suggest a transitional role in the bird during evolution.Item Exendin-4 Ameliorates Motor Neuron Degeneration in Cellular and Animal Models of Amyotrophic Lateral Sclerosis(Public Library of Science, 2012) Li, Yazhou; Chigurupati, Srinivasulu; Holloway, Harold W.; Mughal, Mohamed; Tweedie, David; Bruestle, Daniel A.; Mattson, Mark P.; Wang, Yun; Harvey, Brandon K.; Ray, Balmiki; Lahiri, Debomoy K.; Greig, Nigel H.; Psychiatry, School of MedicineAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS.Item Functional characterization of a competitive peptide antagonist of p65 in human macrophage-like cells suggests therapeutic potential for chronic inflammation(Dove Medical Press, 2014) Srinivasan, Mythily; Blackburn, Corinne; Lahiri, Debomoy K.; Department of Oral Pathology, Medicine and Radiology, IU School of DentistryGlucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid responsive protein that links the nuclear factor-kappa B (NFκB) and the glucocorticoid signaling pathways. Functional and binding studies suggest that the proline-rich region at the carboxy terminus of GILZ binds the p65 subunit of NFκB and suppresses the immunoinflammatory response. A widely-used strategy in the discovery of peptide drugs involves exploitation of the complementary surfaces of naturally occurring binding partners. Previously, we observed that a synthetic peptide (GILZ-P) derived from the proline-rich region of GILZ bound activated p65 and ameliorated experimental encephalomyelitis. Here we characterize the secondary structure of GILZ-P by circular dichroic analysis. GILZ-P adopts an extended polyproline type II helical conformation consistent with the structural conformation commonly observed in interfaces of transient intermolecular interactions. To determine the potential application of GILZ-P in humans, we evaluated the toxicity and efficacy of the peptide drug in mature human macrophage-like THP-1 cells. Treatment with GILZ-P at a wide range of concentrations commonly used for peptide drugs was nontoxic as determined by cell viability and apoptosis assays. Functionally, GILZ-P suppressed proliferation and glutamate secretion by activated macrophages by inhibiting nuclear translocation of p65. Collectively, our data suggest that the GILZ-P has therapeutic potential in chronic CNS diseases where persistent inflammation leads to neurodegeneration such as multiple sclerosis and Alzheimer's disease.
- «
- 1 (current)
- 2
- 3
- »