- Browse by Subject
Browsing by Subject "Penalized likelihood"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Introducing COZIGAM: An R Package for Unconstrained and Constrained Zero-Inflated Generalized Additive Model Analysis(Foundation for Open Access Statistics, 2010-07-26) Liu, Hai; Chan, Kung-Sik; Medicine, School of MedicineZero-inflation problem is very common in ecological studies as well as other areas. Nonparametric regression with zero-inflated data may be studied via the zero-inflated generalized additive model (ZIGAM), which assumes that the zero-inflated responses come from a probabilistic mixture of zero and a regular component whose distribution belongs to the 1-parameter exponential family. With the further assumption that the probability of non-zero-inflation is some monotonic function of the mean of the regular component, we propose the constrained zero-inflated generalized additive model (COZIGAM) for analyzingzero-inflated data. When the hypothesized constraint obtains, the new approach provides a unified framework for modeling zero-inflated data, which is more parsimonious and efficient than the unconstrained ZIGAM. We have developed an R package COZIGAM which contains functions that implement an iterative algorithm for fitting ZIGAMs and COZIGAMs to zero-inflated data basedon the penalized likelihood approach. Other functions included in the packageare useful for model prediction and model selection. We demonstrate the use ofthe COZIGAM package via some simulation studies and a real application.Item A sexually transmitted infection screening algorithm based on semiparametric regression models(Wiley, 2015-09-10) Li, Zhuokai; Liu, Hai; Tu, Wanzhu; Department of Biostatistics, Richard M. Fairbanks School of Public HealthSexually transmitted infections (STIs) with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis are among the most common infectious diseases in the United States, disproportionately affecting young women. Because a significant portion of the infections present no symptoms, infection control relies primarily on disease screening. However, universal STI screening in a large population can be expensive. In this paper, we propose a semiparametric model-based screening algorithm. The model quantifies organism-specific infection risks in individual subjects and accounts for the within-subject interdependence of the infection outcomes of different organisms and the serial correlations among the repeated assessments of the same organism. Bivariate thin-plate regression spline surfaces are incorporated to depict the concurrent influences of age and sexual partners on infection acquisition. Model parameters are estimated by using a penalized likelihood method. For inference, we develop a likelihood-based resampling procedure to compare the bivariate effect surfaces across outcomes. Simulation studies are conducted to evaluate the model fitting performance. A screening algorithm is developed using data collected from an epidemiological study of young women at increased risk of STIs. We present evidence that the three organisms have distinct age and partner effect patterns; for C. trachomatis, the partner effect is more pronounced in younger adolescents. Predictive performance of the proposed screening algorithm is assessed through a receiver operating characteristic analysis. We show that the model-based screening algorithm has excellent accuracy in identifying individuals at increased risk, and thus can be used to assist STI screening in clinical practice.