ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Penalization"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Sparse group variable selection for gene-environment interactions in the longitudinal study
    (Wiley, 2022) Zhou, Fei; Lu, Xi; Ren, Jie; Fan, Kun; Ma, Shuangge; Wu, Cen; Biostatistics and Health Data Science, School of Medicine
    Penalized variable selection for high dimensional longitudinal data has received much attention as it can account for the correlation among repeated measurements while providing additional and essential information for improved identification and prediction performance. Despite the success, in longitudinal studies, the potential of penalization methods is far from fully understood for accommodating structured sparsity. In this article, we develop a sparse group penalization method to conduct the bi-level gene-environment (G×E) interaction study under the repeatedly measured phenotype. Within the quadratic inference function (QIF) framework, the proposed method can achieve simultaneous identification of main and interaction effects on both the group and individual level. Simulation studies have shown that the proposed method outperforms major competitors. In the case study of asthma data from the Childhood Asthma Management Program (CAMP), we conduct G×E study by using high dimensional SNP data as genetic factors and the longitudinal trait, forced expiratory volume in one second (FEV1), as the phenotype. Our method leads to improved prediction and identification of main and interaction effects with important implications.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University