ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Pediatric Intensive Care Units"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    History of Riley Pulmonary Section
    (Riley Children's Health, 2024-06-25) Eigen, Howard
  • Loading...
    Thumbnail Image
    Item
    Tracheal Aspirate as an Alternative Biologic Sample for Pharmacogenomics Testing in Mechanically Ventilated Pediatric Patients
    (Wiley, 2021-03) Hargreaves, Katherine A.; Pratt, Victoria M.; Medeiros, Elizabeth B.; Lynnes, Ty C.; Granfield, Caitlin A.; Skaar, Todd C.; Iwata-Otsubo, Aiko; Tillman, Emma M.; Medical and Molecular Genetics, School of Medicine
    Patients in the pediatric intensive care unit are exposed to multiple medications and are at high risk for adverse drug reactions. Pharmacogenomic (PGx) testing could help decrease their risk of adverse reactions. Although whole blood is preferred for PGx testing, blood volume in this population is often limited. However, for patients on mechanical ventilation, tracheal secretions are abundant, frequently suctioned, and discarded. Thus, the aim of this pilot study was to determine if tracheal aspirates could be used as a source of human genomic DNA for PGx testing. We successfully extracted DNA from tracheal secretions of all 23 patients in the study. The samples were successfully genotyped for 10 clinically actionable single nucleotide variants across 3 cytochrome P450 genes (CYP2D6, CYP2C19, and CYP3A5). Using DNA from whole blood samples in 11 of the patients, we confirmed the accuracy of the genotyping with 100% concordance. Therefore, our results support the use of tracheal aspirates from mechanically ventilated children as an adequate biospecimen for clinical genetic testing.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University