- Browse by Subject
Browsing by Subject "Pathways"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Alternative Assembly Pathways of the 20S Proteasome and Non-canonical Complexes(2018-12) Panfair, Dilrajkaur; Balakrishnan, Lata; Kusmierczyk, Andrew; Randall, Stephen; Rubenstein, Eric; Anderson, GregoryThe 20S proteasome, a multi-subunit protease complex, present in all domains of life and some orders of bacteria, is involved in degradation of the majority of cellular proteins. Structurally, it is made of α and β subunits arranged in four heptameric rings, with inner two β-rings sandwiched between outer two α-rings. The 20S proteasome in prokaryotes usually has one type of α and one type of β subunits, whereas eukaryotes have seven distinct types of α and seven distinct types of β subunits. Unlike the highly conserved structure of proteasome, its assembly pathway is different across the domains. In archaea and eukaryotes, proteasome assembly begins with α subunit interactions leading to the α-ring formation. By contrast, bacterial proteasome assembly pathway bypasses the α-ring formation step by initiating assembly through an α and β subunit interaction first. These early interactions are not well understood due to their highly rapid and dynamic nature. This dissertation focused on understanding the early events in proteasome assembly and contributed three significant findings. First, the archaeal proteasome assembly can also begin without formation of α-rings, demonstrating the coexistence of a bacterial-like assembly pathway. Second, a novel assembly intermediate was identified in yeast, and its composition argues for the presence of a similar α-ring independent assembly pathway. Third, the assembly chaperone Pba3-Pba4 prevents the formation of high molecular weight complexes arising from spontaneous and non-productive interactions among the α subunits. These findings provide a broader understanding of proteasome biogenesis and suggest considering proteasome assembly event as a network of interactions rather than a linear pathway. The results also shed light on assembly chaperone’s contribution in increasing the efficiency of proteasome assembly by streamlining the productive interactions.Item Targeting SHP2 phosphatase in hematological malignancies(Taylor & Francis, 2022) Kanumuri, Rahul; Pasupuleti, Santhosh Kumar; Burns, Sarah S.; Ramdas, Baskar; Kapur, Reuben; Pediatrics, School of MedicineIntroduction: Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a ubiquitously expressed, non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene. Gain-of-function (GOF) mutations in PTPN11 are associated with the development of various hematological malignancies and Noonan syndrome with multiple lentigines (NS-ML). Preclinical studies performed with allosteric SHP2 inhibitors and combination treatments of SHP2 inhibitors with inhibitors of downstream regulators (such as MEK, ERK, and PD-1/PD-L1) demonstrate improved antitumor benefits. However, the development of novel SHP2 inhibitors is necessary to improve the therapeutic strategies for hematological malignancies and tackle drug resistance and disease relapse. Areas covered: This review examines the structure of SHP2, its function in various signaling cascades, the consequences of constitutive activation of SHP2 and potential therapeutic strategies to treat SHP2-driven hematological malignancies. Expert opinion: While SHP2 inhibitors have exhibited promise in preclinical trials, numerous challenges remain in translation to the clinic, including drug resistance. Although PROTAC-based SHP2 degraders show better efficacy than SHP2 inhibitors, novel strategies need to be designed to improve SHP2-specific therapies in hematologic malignancies. Genome-wide CRISPR screening should also be used to identify molecules that confer resistance to SHP2 inhibitors. Targeting these molecules together with SHP2 can increase the target specificity and reduce drug resistance.