- Browse by Subject
Browsing by Subject "Parkinson's disease"
Now showing 1 - 10 of 50
Results Per Page
Sort Options
Item A proteogenomic view of Parkinson's disease causality and heterogeneity(Springer Nature, 2023-02-11) Kaiser, Sergio; Zhang, Luqing; Mollenhauer, Brit; Jacob, Jaison; Longerich, Simonne; Del-Aguila, Jorge; Marcus, Jacob; Raghavan, Neha; Stone, David; Fagboyegun, Olumide; Galasko, Douglas; Dakna, Mohammed; Bilican, Bilada; Dovlatyan, Mary; Kostikova, Anna; Li, Jingyao; Peterson, Brant; Rotte, Michael; Sanz, Vinicius; Foroud, Tatiana; Hutten, Samantha J.; Frasier, Mark; Iwaki, Hirotaka; Singleton, Andrew; Marek, Ken; Crawford, Karen; Elwood, Fiona; Messa, Mirko; Serrano-Fernandez, Pablo; Medical and Molecular Genetics, School of MedicineThe pathogenesis and clinical heterogeneity of Parkinson’s disease (PD) have been evaluated from molecular, pathophysiological, and clinical perspectives. High-throughput proteomic analysis of cerebrospinal fluid (CSF) opened new opportunities for scrutinizing this heterogeneity. To date, this is the most comprehensive CSF-based proteomics profiling study in PD with 569 patients (350 idiopathic patients, 65 GBA + mutation carriers and 154 LRRK2 + mutation carriers), 534 controls, and 4135 proteins analyzed. Combining CSF aptamer-based proteomics with genetics we determined protein quantitative trait loci (pQTLs). Analyses of pQTLs together with summary statistics from the largest PD genome wide association study (GWAS) identified 68 potential causal proteins by Mendelian randomization. The top causal protein, GPNMB, was previously reported to be upregulated in the substantia nigra of PD patients. We also compared the CSF proteomes of patients and controls. Proteome differences between GBA + patients and unaffected GBA + controls suggest degeneration of dopaminergic neurons, altered dopamine metabolism and increased brain inflammation. In the LRRK2 + subcohort we found dysregulated lysosomal degradation, altered alpha-synuclein processing, and neurotransmission. Proteome differences between idiopathic patients and controls suggest increased neuroinflammation, mitochondrial dysfunction/oxidative stress, altered iron metabolism and potential neuroprotection mediated by vasoactive substances. Finally, we used proteomic data to stratify idiopathic patients into “endotypes”. The identified endotypes show differences in cognitive and motor disease progression based on previously reported protein-based risk scores.Our findings not only contribute to the identification of new therapeutic targets but also to shape personalized medicine in CNS neurodegeneration.Item Absence of C9ORF72 expanded or intermediate repeats in autopsy-confirmed Parkinson's disease(Wiley, 2014-05) Nuytemans, Karen; Inchausti, Vanessa; Beecham, Gary W.; Wang, Liyong; Dickson, Dennis W.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Mash, Deborah C.; Frosch, Matthew P.; Foroud, Tatiana M.; Honig, Lawrence S.; Montine, Thomas J.; Dawson, Ted M.; Martin, Eden R.; Scott, William K.; Vance, Jeffery M.; Medical & Molecular Genetics, School of MedicineBACKGROUND: We have reported that intermediate repeat lengths of the C9ORF72 repeat are a risk factor for Parkinson's disease (PD) in a clinically diagnosed data set. Because 10% to 25% of clinically diagnosed PD have different diagnoses upon autopsy, we hypothesized that this may reflect phenotypic heterogeneity or concomitant pathology of other neurodegenerative disorders. METHODS: We screened 488 autopsy-confirmed PD cases for expansion haplotype tag rs3849942T. In 196 identified haplotype carriers, the C9ORF72 repeat was genotyped using the repeat-primed polymerase chain reaction assay. RESULTS: No larger (intermediate or expanded) repeats were found in these autopsy-confirmed PD samples. This absence of larger repeats is significantly different from the frequency in clinically diagnosed datasets (P = 0.002). CONCLUSIONS: Our results suggest that expanded or intermediate C9ORF72 repeats in clinically diagnosed PD or parkinsonism might be an indication of heterogeneity in clinically diagnosed PD cases. Further studies are needed to elucidate the potential contribution of the C9ORF72 repeat to autopsy-confirmed PD.Item Accelerated symptom improvement in Parkinson’s disease via remote internet-based optimization of deep brain stimulation therapy: a randomized controlled multicenter trial(Springer Nature, 2025-01-31) Gharabaghi, Alireza; Groppa, Sergiu; Navas-Garcia, Marta; Schnitzler, Alfons; Muñoz-Delgado, Laura; Marshall, Vicky L.; Karl, Jessica; Zhang, Lin; Alvarez, Ramiro; Feldman, Mary S.; Soileau, Michael J.; Luo, Lan; Zauber, S. Elizabeth; Walter, Benjamin L.; Wu, Chengyuan; Lei, Hong; Herz, Damian M.; Chung, Ming-Hua; Pathak, Yagna; Blomme, Bram; Cheeran, Binith; Luca, Corneliu; Weiss, Daniel; Neurology, School of MedicineBackground: Deep brain stimulation (DBS) has emerged as an important therapeutic intervention for neurological and neuropsychiatric disorders. After initial programming, clinicians are tasked with fine-tuning DBS parameters through repeated in-person clinic visits. We aimed to evaluate whether DBS patients achieve clinical benefit more rapidly by incorporating remote internet-based adjustment (RIBA) of stimulation parameters into the continuum of care. Methods: We conducted a randomized controlled multicenter study (ClinicalTrails.gov NCT05269862) involving patients scheduled for de novo implantation with a DBS System to treat Parkinson's Disease. Eligibility criteria included the ability to incorporate RIBA as part of routine follow-up care. Ninety-six patients were randomly assigned in a 1:1 ratio using automated allocation, blocked into groups of 4, allocation concealed, and no stratification. After surgery and initial configuration of stimulation parameters, optimization of DBS settings occurred in the clinic alone (IC) or with additional access to RIBA. The primary outcome assessed differences in the average time to achieve a one-point improvement on the Patient Global Impression of Change score between groups. Patients, caregivers, and outcome assessors were not blinded to group assignment. Most of the data collection took place in the patient's home environment. Results: Access to RIBA reduces the time to symptom improvement, with patients reporting 15.1 days faster clinical benefit (after 39.1 (SD 3.3) days in the RIBA group (n = 48) and after 54.2 (SD 3.7) days in the IC group (n = 48)). None of the reported adverse events are related to RIBA. Conclusions: This study demonstrates safety and efficacy of internet-based adjustment of DBS therapy, while providing clinical benefit earlier than in-clinic optimization of stimulation parameters by increasing patient access to therapy adjustment.Item Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration(Wiley, 2020-08-04) Sun, Ling; Zhang, Jie; Chen, Wenfeng; Chen, Yun; Zhang, Xiaohui; Yang, Mingjuan; Xiao, Min; Ma, Fujun; Yao, Yizhou; Ye, Meina; Zhang, Zhenkun; Chen, Kai; Chen, Fei; Ren, Yujun; Ni, Shiwei; Zhang, Xi; Yan, Zhangming; Sun, Zhi-Rong; Zhou, Hai-Meng; Yang, Hongqin; Xie, Shusen; Haque, M. Emdadul; Huang, Kun; Yang, Yufeng; Medical and Molecular Genetics, School of MedicineHow complex interactions of genetic, environmental factors and aging jointly contribute to dopaminergic degeneration in Parkinson's disease (PD) is largely unclear. Here, we applied frequent gene co‐expression analysis on human patient substantia nigra‐specific microarray datasets to identify potential novel disease‐related genes. In vivo Drosophila studies validated two of 32 candidate genes, a chromatin‐remodeling factor SMARCA4 and a biliverdin reductase BLVRA. Inhibition of SMARCA4 was able to prevent aging‐dependent dopaminergic degeneration not only caused by overexpression of BLVRA but also in four most common Drosophila PD models. Furthermore, down‐regulation of SMARCA4 specifically in the dopaminergic neurons prevented shortening of life span caused by α‐synuclein and LRRK2. Mechanistically, aberrant SMARCA4 and BLVRA converged on elevated ERK‐ETS activity, attenuation of which by either genetic or pharmacological manipulation effectively suppressed dopaminergic degeneration in Drosophila in vivo. Down‐regulation of SMARCA4 or drug inhibition of MEK/ERK also mitigated mitochondrial defects in PINK1 (a PD‐associated gene)‐deficient human cells. Our findings underscore the important role of epigenetic regulators and implicate a common signaling axis for therapeutic intervention in normal aging and a broad range of age‐related disorders including PD.Item Author Correction: Elucidating causative gene variants in hereditary Parkinson’s disease in the Global Parkinson’s Genetics Program (GP2)(Springer Nature, 2023-09-13) Lange, Lara M.; Avenali, Micol; Ellis, Melina; Illarionova, Anastasia; Keller Sarmiento, Ignacio J.; Tan, Ai-Huey; Madoev, Harutyun; Galandra, Caterina; Junker, Johanna; Roopnarain, Karisha; Solle, Justin; Wegel, Claire; Fang, Zih-Hua; Heutink, Peter; Kumar, Kishore R.; Lim, Shen-Yang; Valente, Enza Maria; Nalls, Mike; Blauwendraat, Cornelis; Singleton, Andrew; Mencacci, Niccolo; Lohmann, Katja; Klein, Christine; Global Parkinson’s Genetic Program (GP2); Medical and Molecular Genetics, School of MedicineItem Author Correction: Genetic factors affecting dopaminergic deterioration during the premotor stage of Parkinson disease(Springer Nature, 2022-03-09) Lee, Myung Jun; Pak, Kyoungjune; Kim, Han-Kyeol; Nudelman, Kelly N.; Kim, Jong Hun; Kim, Yun Hak; Kang, Junho; Baek, Min Seok; Lyoo, Chul Hyoung; Medical and Molecular Genetics, School of MedicineErratum for: Genetic factors affecting dopaminergic deterioration during the premotor stage of Parkinson disease. Lee MJ, Pak K, Kim HK, Nudelman KN, Kim JH, Kim YH, Kang J, Baek MS, Lyoo CH. NPJ Parkinsons Dis. 2021 Nov 26;7(1):104. doi: 10.1038/s41531-021-00250-2. PMID: 34836969Item Author Correction: Report from a multidisciplinary meeting on anxiety as a non-motor manifestation of Parkinson’s disease(Nature, 2020-06-02) Pontone, Gregory M.; Dissanayaka, Nadeeka; Apostolova, Liana; Brown, Richard G.; Dobkin, Roseanne; Dujardin, Kathy; Friedman, Joseph H.; Leentjens, Albert F. G.; Lenze, Eric J.; Marsh, Laura; Mari, Lynda; Monchi, Oury; Richard, Irene H.; Schrag, Anette; Strafella, Antonio P.; Vernaleo, Beth; Weintraub, Daniel; Mari, Zoltan; Neurology, School of MedicineItem Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein(National Academy of Sciences, 2016-08-23) Wang, Wei; Nguyen, Linh T. T.; Burlak, Christopher; Chegini, Fariba; Guo, Feng; Chataway, Tim; Ju, Shulin; Fisher, Oriana S.; Miller, David W.; Datta, Debajyoti; Wu, Fang; Wu, Chun-Xiang; Landeru, Anuradha; Wells, James A.; Cookson, Mark R.; Boxer, Matthew B.; Thomas, Craig J.; Gai, Wei Ping; Ringe, Dagmar; Petsko, Gregory A.; Hoang, Quyen Q.; Department of Biochemistry & Molecular Biology, IU School of MedicineThe aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.Item Combating Parkinson's disease-associated toxicity by modulating proteostasis(National Academy of Sciences, 2017-01-31) Park, Yangshin; Hoang, Quyen Q.; Biochemistry and Molecular Biology, School of MedicineItem A Community-Based Occupational Therapy Program for Parkinson's(2023-05-02) Stiens, Maria; Hull, Kristin; Department of Occupational Therapy, School of Health and Human Sciences; Williams, KimParkinson’s disease is a progressive neurological condition that causes symptoms that interrupt safety, performance, and participation in everyday life activities. The literature supports occupational therapy’s role in maximizing quality of life and preventing occupational decline in people with Parkinson’s disease. Despite the effectiveness of occupational therapy treatment with this population, occupational therapy services are under-utilized among those with Parkinson’s disease. This doctoral capstone experience and project sought to increase access to occupational therapy services to individuals with Parkinson’s within the state of Indiana through free occupation-based groups hosted by a local Parkinson’s organization. Through needs assessments and client-centered surveys, the occupational needs and interests of site stakeholders were determined. Fourteen in-person training sessions were created and delivered to two Parkinson group locations within the greater Indianapolis area. There was a total of approximately thirty participants primarily consisting of community-dwelling individuals with Parkinson’s. Post-survey results indicated a positive trend, demonstrating an overall decrease in participants’ perceived difficulty with surveyed tasks. This study supports the continued need for occupation-based education and training for individuals with Parkinson’s.