ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "PTP"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A facile hydroxyindole carboxylic acid based focused library approach for potent and selective inhibitors of Mycobacterium protein tyrosine phosphatase B
    (Wiley, 2013) Zeng, Li-Fan; Xu, Jie; He, Yantao; He, Rongjun; Wu, Li; Gunawan, Andrea M.; Zhang, Zhong-Yin; Biochemistry and Molecular Biology, School of Medicine
    Focused on Mtb: A facile hydroxyindole carboxylic acid based focused amide library was designed to target both the PTP active site and a unique nearby pocket for enhanced affinity and selectivity. HTS of the library led to the identification of a highly potent and selective inhibitor, 11 a, of mPTPB, an essential virulence factor for Mycobacterium tuberculosis. Compound 11 a shows high cellular activity and is capable of reversing the altered immune responses induced by mPTPB in macrophages.
  • Loading...
    Thumbnail Image
    Item
    Diverse Levels of Sequence Selectivity and Catalytic Efficiency of Protein-Tyrosine Phosphatases
    (American Chemical Society, 2014-01-21) Selner, Nicholas G.; Luechapanichkul, Rinrada; Chen, Xianwen; Neel, Benjamin G.; Zhang, Zhong-Yin; Knapp, Stefan; Bell, Charles E.; Pei, Dehua; Department of Biochemistry & Molecular Biology, IU School of Medicine
    The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences, but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >105-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >105-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3–18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A co-crystal structure of PTP1B bound with a nephrin pY1193 peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.
  • Loading...
    Thumbnail Image
    Item
    The Impact of Pretrial Publicity on Perceptions of Guilt
    (2015) Drew, Ryan M.; Devine, Dennis J.; Williams, Jane R.; Rand, Kevin L.; Grahame, Nicholas J.
    Ninety-eight empirical effects examining the impact of pretrial publicity (PTP) on perceptions of guilt were meta-analytically analyzed. As hypothesized, results suggested that anti-defendant PTP was associated with increased perceptions of defendant guilt, whereas pro-defendant PTP was associated with decreased perceptions of defendant guilt. Additionally, several moderator variables were examined. The results suggested that the size of the effect of PTP is dependent upon several variables, including the level of the analysis (jury-level vs. juror level), the type of crime involved in the case, the nature of the information provided to the participants in the control condition, the reality of the case used in the study, the delay between PTP exposure and the collection of the verdict preference, the medium of the PTP presentation, the publication status of the data source, and the outcome measure utilized.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University