- Browse by Subject
Browsing by Subject "PTEN Phosphohydrolase"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness(Elsevier, 2014-03-04) Yue, Shuhua; Li, Junjie; Lee, Seung-Young; Lee, Hyeon Jeong; Shao, Tian; Song, Bing; Cheng, Liang; Masterson, Timothy A.; Liu, Xiaoqi; Ratliff, Timothy L.; Cheng, Ji-Xin; Department of Pathology & Laboratory Medicine, IU School of MedicineAltered lipid metabolism is increasingly recognized as a signature of cancer cells. Enabled by label-free Raman spectromicroscopy, we performed quantitative analysis of lipogenesis at single cell level in human patient cancerous tissues. Our imaging data revealed an unexpected, aberrant accumulation of esterified cholesterol in lipid droplets of high-grade prostate cancer and metastases. Biochemical study showed that such cholesteryl ester accumulation was a consequence of loss of tumor suppressor PTEN and subsequent activation of PI3K/AKT pathway in prostate cancer cells. Furthermore, we found that such accumulation arose from significantly enhanced uptake of exogenous lipoproteins and required cholesterol esterification. Depletion of cholesteryl ester storage significantly reduced cancer proliferation, impaired cancer invasion capability, and suppressed tumor growth in mouse xenograft models with negligible toxicity. These findings open opportunities for diagnosing and treating prostate cancer by targeting the altered cholesterol metabolism.Item Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis(American Association for the Advancement of Science, 2018-05-01) Sisti, Flavia; Wang, Soujuan; Brandt, Stephanie L.; Glosson-Byers, Nicole; Mayo, Lindsey; Son, Young min; Sturgeon, Sarah; Filgueiras, Luciano; Jancar, Sonia; Wong, Hector; Dela Cruz, Charles S.; Andrews, Nathaniel; Alves-Filho, Jose Carlos; Cunha, Fernando Q.; Serezani, C. Henrique; Microbiology and Immunology, School of MedicineSepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage. Septic patients and mice with sepsis exhibited increased PTEN expression in leukocytes. Myeloid-specific Pten deletion in an animal model of sepsis increased bacterial loads and cytokine production, which depended on enhanced myeloid differentiation primary response gene 88 (MyD88) abundance and resulted in mortality. PTEN-mediated induction of the microRNAs (miRNAs) miR125b and miR203b reduced the abundance of MyD88. Loss- and gain-of-function assays demonstrated that PTEN induced miRNA production by associating with and facilitating the nuclear localization of Drosha-Dgcr8, part of the miRNA-processing complex. Reconstitution of PTEN-deficient mouse embryonic fibroblasts with a mutant form of PTEN that does not localize to the nucleus resulted in retention of Drosha-Dgcr8 in the cytoplasm and impaired production of mature miRNAs. Thus, we identified a regulatory pathway involving nuclear PTEN-mediated miRNA generation that limits the production of MyD88 and thereby limits sepsis-associated mortality.Item PTEN inhibitor bisperoxovanadium protects oligodendrocytes and myelin and prevents neuronal atrophy in adult rats following cervical hemicontusive spinal cord injury(Elsevier, 2014-06-24) Walker, Chandler L.; Xu, Xiao-Ming; Department of Neurological Surgery, IU School of MedicineCervical spinal cord injury (SCI) damages axons and motor neurons responsible for ipsilateral forelimb function and causes demyelination and oligodendrocyte death. Inhibition of the phosphatase and tensin homologue, PTEN, promotes neural cell survival, neuroprotection and regeneration in vivo and in vitro. PTEN inhibition can also promote oligodendrocyte-mediated myelination of axons in vitro likely through Akt activation. We recently demonstrated that acute treatment with phosphatase PTEN inhibitor, bisperoxovanadium (bpV)-pic reduced tissue damage, neuron death, and promoted functional recovery after cervical hemi-contusion SCI. Evidence suggests bpV can promote myelin stability; however, bpV effects on myelination and oligodendrocytes in contusive SCI models are unclear. We hypothesized that bpV could increase myelin around the injury site through sparing or remyelination, and that bpV treatment may promote increased numbers of oligodendrocytes. Using histological and immunofluorescence labeling, we found that bpV treatment promoted significant spared white matter (30%; p < 0.01) and Luxol Fast Blue (LFB)+ myelin area rostral (Veh: 0.56 ± 0.01 vs. bpV: 0.64 ± 0.02; p < 0.05) and at the epicenter (Veh: 0.4175 ± 0.03 vs. bpV: 0.5400 ± 0.03; p < 0.05). VLF oligodendrocytes were also significantly greater with bpV therapy (109 ± 5.3 vs. Veh: 77 ± 2.7/mm2; p < 0.01). In addition, bpV increased mean motor neuron soma area versus vehicle-treatment (1.0 ± 0.02 vs. Veh: 0.77 ± 0.02) relative to Sham neuron size. This study provides key insight into additional cell and tissue effects that could contribute to bpV-mediated functional recovery observed after contusive cervical SCI.Item PTEN directs developmental and metabolic signaling for innate-like T cell fate and tissue homeostasis(Springer Nature, 2022) Blanco, Daniel Bastardo; Chapman, Nicole M.; Raynor, Jana L.; Xu, Chengxian; Su, Wei; Anil, K. C.; Li, Wei; Lim, Seon Ah; Schattgen, Stefan; Shi, Hao; Risch, Isabel; Sun, Yu; Dhungana, Yogesh; Kim, Yunjung; Wei, Jun; Rankin, Sherri; Neale, Geoffrey; Thomas, Paul G.; Yang, Kai; Chi, Hongbo; Pediatrics, School of MedicinePhosphatase and tensin homologue (PTEN) is frequently mutated in human cancer, but its roles in lymphopoiesis and tissue homeostasis remain poorly defined. Here we show that PTEN orchestrates a two-step developmental process linking antigen receptor and IL-23-Stat3 signalling to type-17 innate-like T cell generation. Loss of PTEN leads to pronounced accumulation of mature IL-17-producing innate-like T cells in the thymus. IL-23 is essential for their accumulation, and ablation of IL-23 or IL-17 signalling rectifies the reduced survival of female PTEN-haploinsufficient mice that model human patients with PTEN mutations. Single-cell transcriptome and network analyses revealed the dynamic regulation of PTEN, mTOR and metabolic activities that accompanied type-17 cell programming. Furthermore, deletion of mTORC1 or mTORC2 blocks PTEN loss-driven type-17 cell accumulation, and this is further shaped by the Foxo1 and Stat3 pathways. Collectively, our study establishes developmental and metabolic signalling networks underpinning type-17 cell fate decisions and their functional effects at coordinating PTEN-dependent tissue homeostasis.