- Browse by Subject
Browsing by Subject "PSEN1"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Cryo-EM structures of cotton wool plaques' amyloid β and of tau filaments in dominantly inherited Alzheimer disease(Springer, 2024-08-15) Hoq, Md Rejaul; Fernandez, Anllely; Vago, Frank S.; Hallinan, Grace I.; Bharath, Sakshibeedu R.; Li, Daoyi; Ozcan, Kadir A.; Garringer, Holly J.; Jiang, Wen; Vidal, Ruben; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineCotton wool plaques (CWPs) have been described as features of the neuropathologic phenotype of dominantly inherited Alzheimer disease (DIAD) caused by some missense and deletion mutations in the presenilin 1 (PSEN1) gene. CWPs are round, eosinophilic amyloid-β (Aβ) plaques that lack an amyloid core and are recognizable, but not fluorescent, in Thioflavin S (ThS) preparations. Amino-terminally truncated and post-translationally modified Aβ peptide species are the main component of CWPs. Tau immunopositive neurites may be present in CWPs. In addition, neurofibrillary tangles coexist with CWPs. Herein, we report the structure of Aβ and tau filaments isolated from brain tissue of individuals affected by DIAD caused by the PSEN1 V261I and A431E mutations, with the CWP neuropathologic phenotype. CWPs are predominantly composed of type I Aβ filaments present in two novel arrangements, type Ic and type Id; additionally, CWPs contain type I and type Ib Aβ filaments. Tau filaments have the AD fold, which has been previously reported in sporadic AD and DIAD. The formation of type Ic and type Id Aβ filaments may be the basis for the phenotype of CWPs. Our data are relevant for the development of PET imaging methodologies to best detect CWPs in DIAD.Item Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer's disease(BioMed Central, 2016-08-12) Nho, Kwangsik; Horgusluoglu, Emrin; Kim, Sungeun; Risacher, Shannon L.; Kim, Dokyoon; Foroud, Tatiana; Aisen, Paul S.; Peterson, Ronald C.; Jack Jr., Clifford R.; Shaw, Leslie M.; Trojanowski, John Q.; Weiner, Michael W.; Green, Robert C.; Toga, Arthur W.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, IU School of MedicineBACKGROUND: Pathogenic mutations in PSEN1 are known to cause familial early-onset Alzheimer's disease (EOAD) but common variants in PSEN1 have not been found to strongly influence late-onset AD (LOAD). The association of rare variants in PSEN1 with LOAD-related endophenotypes has received little attention. In this study, we performed a rare variant association analysis of PSEN1 with quantitative biomarkers of LOAD using whole genome sequencing (WGS) by integrating bioinformatics and imaging informatics. METHODS: A WGS data set (N = 815) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort was used in this analysis. 757 non-Hispanic Caucasian participants underwent WGS from a blood sample and high resolution T1-weighted structural MRI at baseline. An automated MRI analysis technique (FreeSurfer) was used to measure cortical thickness and volume of neuroanatomical structures. We assessed imaging and cerebrospinal fluid (CSF) biomarkers as LOAD-related quantitative endophenotypes. Single variant analyses were performed using PLINK and gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O). RESULTS: A total of 839 rare variants (MAF < 1/√(2 N) = 0.0257) were found within a region of ±10 kb from PSEN1. Among them, six exonic (three non-synonymous) variants were observed. A single variant association analysis showed that the PSEN1 p. E318G variant increases the risk of LOAD only in participants carrying APOE ε4 allele where individuals carrying the minor allele of this PSEN1 risk variant have lower CSF Aβ1-42 and higher CSF tau. A gene-based analysis resulted in a significant association of rare but not common (MAF ≥ 0.0257) PSEN1 variants with bilateral entorhinal cortical thickness. CONCLUSIONS: This is the first study to show that PSEN1 rare variants collectively show a significant association with the brain atrophy in regions preferentially affected by LOAD, providing further support for a role of PSEN1 in LOAD. The PSEN1 p. E318G variant increases the risk of LOAD only in APOE ε4 carriers. Integrating bioinformatics with imaging informatics for identification of rare variants could help explain the missing heritability in LOAD.Item Presenilin-1 mutation position influences amyloidosis, small vessel disease, and dementia with disease stage(Wiley, 2024) Joseph-Mathurin, Nelly; Feldman, Rebecca L.; Lu, Ruijin; Shirzadi, Zahra; Toomer, Carmen; Saint Clair, Junie R.; Ma, Yinjiao; McKay, Nicole S.; Strain, Jeremy F.; Kilgore, Collin; Friedrichsen, Karl A.; Chen, Charles D.; Gordon, Brian A.; Chen, Gengsheng; Hornbeck, Russ C.; Massoumzadeh, Parinaz; McCullough, Austin A.; Wang, Qing; Li, Yan; Wang, Guoqiao; Keefe, Sarah J.; Schultz, Stephanie A.; Cruchaga, Carlos; Preboske, Gregory M.; Jack, Clifford R., Jr.; Llibre-Guerra, Jorge J.; Allegri, Ricardo F.; Ances, Beau M.; Berman, Sarah B.; Brooks, William S.; Cash, David M.; Day, Gregory S.; Fox, Nick C.; Fulham, Michael; Ghetti, Bernardino; Johnson, Keith A.; Jucker, Mathias; Klunk, William E.; la Fougère, Christian; Levin, Johannes; Niimi, Yoshiki; Oh, Hwamee; Perrin, Richard J.; Reischl, Gerald; Ringman, John M.; Saykin, Andrew J.; Schofield, Peter R.; Su, Yi; Supnet-Bell, Charlene; Vöglein, Jonathan; Yakushev, Igor; Brickman, Adam M.; Morris, John C.; McDade, Eric; Xiong, Chengjie; Bateman, Randall J.; Chhatwal, Jasmeer P.; Benzinger, Tammie L. S.; Dominantly Inherited Alzheimer Network; Pathology and Laboratory Medicine, School of MedicineIntroduction: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. Methods: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. Results: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. Discussion: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. Highlights: Mutation position influences Aβ burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aβ burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.Item Widespread white matter and conduction defects in PSEN1-related spastic paraparesis(Elsevier, 2016-11) Soosman, Steffan K.; Joseph-Mathurin, Nelly; Braskie, Meredith N.; Bordelon, Yvette M.; Wharton, David; Casado, Maria; Coppola, Giovanni; McCallum, Holly; Nuwer, Marc; Coutin-Churchman, Pedro; Apostolova, Liana G.; Benzinger, Tammie; Ringman, John M.; Neurology, School of MedicineThe mechanisms underlying PSEN1 mutation-associated spastic paraparesis (SP) are not clear. We compared diffusion and volumetric magnetic resonance measures between 3 persons with SP associated with the A431E mutation and 7 symptomatic persons with PSEN1 mutations without SP matched for symptom duration. We performed amyloid imaging and central motor and somatosensory conduction studies in one subject with SP. We found decreases in fractional anisotropy and increases in mean diffusivity in widespread white matter areas including the corpus callosum, occipital, parietal, and frontal lobes in PSEN1 mutation carriers with SP. Volumetric measures were not different and amyloid imaging showed low signal in sensorimotor cortex and other areas in a single subject with SP. Electrophysiological studies demonstrated both slowed motor and sensory conduction in the lower extremities in this same subject. Our results suggest that SP in carriers of the A431E PSEN1 mutation is a manifestation of widespread white matter abnormalities not confined to the corticospinal tract that is at most indirectly related to the mutation’s effect on APP processing and amyloid deposition.