- Browse by Subject
Browsing by Subject "PERK"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Activation of the integrated stress response (ISR) pathways in response to Ref-1 inhibition in human pancreatic cancer and its tumor microenvironment(Frontiers Media, 2023-04-27) Mijit, Mahmut; Boner, Megan; Cordova, Ricardo A.; Gampala, Silpa; Kpenu, Eyram; Klunk, Angela J.; Zhang, Chi; Kelley, Mark R.; Staschke, Kirk A.; Fishel, Melissa L.; Pediatrics, School of MedicinePancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is characterized by a profound inflammatory tumor microenvironment (TME) with high heterogeneity, metastatic propensity, and extreme hypoxia. The integrated stress response (ISR) pathway features a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) and regulate translation in response to diverse stress conditions, including hypoxia. We previously demonstrated that eIF2 signaling pathways were profoundly affected in response to Redox factor-1 (Ref-1) knockdown in human PDAC cells. Ref-1 is a dual function enzyme with activities of DNA repair and redox signaling, responds to cellular stress, and regulates survival pathways. The redox function of Ref-1 directly regulates multiple transcription factors including HIF-1α, STAT3, and NF-κB, which are highly active in the PDAC TME. However, the mechanistic details of the crosstalk between Ref-1 redox signaling and activation of ISR pathways are unclear. Following Ref-1 knockdown, induction of ISR was observed under normoxic conditions, while hypoxic conditions were sufficient to activate ISR irrespective of Ref-1 levels. Inhibition of Ref-1 redox activity increased expression of p-eIF2 and ATF4 transcriptional activity in a concentration-dependent manner in multiple human PDAC cell lines, and the effect on eIF2 phosphorylation was PERK-dependent. Treatment with PERK inhibitor, AMG-44 at high concentrations resulted in activation of the alternative ISR kinase, GCN2 and induced levels of p-eIF2 and ATF4 in both tumor cells and cancer-associated fibroblasts (CAFs). Combination treatment with inhibitors of Ref-1 and PERK enhanced cell killing effects in both human pancreatic cancer lines and CAFs in 3D co-culture, but only at high doses of PERK inhibitors. This effect was completely abrogated when Ref-1 inhibitors were used in combination with GCN2 inhibitor, GCN2iB. We demonstrate that targeting of Ref-1 redox signaling activates the ISR in multiple PDAC lines and that this activation of ISR is critical for inhibition of the growth of co-culture spheroids. Combination effects were only observed in physiologically relevant 3D co-cultures, suggesting that the model system utilized can greatly affect the outcome of these targeted agents. Inhibition of Ref-1 signaling induces cell death through ISR signaling pathways, and combination of Ref-1 redox signaling blockade with ISR activation could be a novel therapeutic strategy for PDAC treatment.Item Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice(Oxford University Press, 2017-06) Pettit, Ashley P.; Jonsson, William O.; Bargoud, Albert R.; Mirek, Emily T.; Peelor, Frederick F., III; Wang, Yongping; Gettys, Thomas W.; Kimball, Scot R.; Miller, Benjamin F.; Hamilton, Karyn L.; Wek, Ronald C.; Anthony, Tracy G.; Biochemistry and Molecular Biology, School of MedicineBackground: The phosphorylation of eukaryotic initiation factor 2 (p-eIF2) during dietary amino acid insufficiency reduces protein synthesis and alters gene expression via the integrated stress response (ISR).Objective: We explored whether a Met-restricted (MR) diet activates the ISR to reduce body fat and regulate protein balance.Methods: Male and female mice aged 3-6 mo with either whole-body deletion of general control nonderepressible 2 (Gcn2) or liver-specific deletion of protein kinase R-like endoplasmic reticulum kinase (Perk) alongside wild-type or floxed control mice were fed an obesogenic diet sufficient in Met (0.86%) or an MR (0.12% Met) diet for ≤5 wk. Ala enrichment with deuterium was measured to calculate protein synthesis rates. The guanine nucleotide exchange factor activity of eIF2B was measured alongside p-eIF2 and hepatic mRNA expression levels at 2 d and 5 wk. Metabolic phenotyping was conducted at 4 wk, and body composition was measured throughout. Results were evaluated with the use of ANOVA (P < 0.05).Results: Feeding an MR diet for 2 d did not increase hepatic p-eIF2 or reduce eIF2B activity in wild-type or Gcn2-/- mice, yet many genes transcriptionally regulated by the ISR were altered in both strains in the same direction and amplitude. Feeding an MR diet for 5 wk increased p-eIF2 and reduced eIF2B activity in wild-type but not Gcn2-/- mice, yet ISR-regulated genes altered in both strains similarly. Furthermore, the MR diet reduced mixed and cytosolic but not mitochondrial protein synthesis in both the liver and skeletal muscle regardless of Gcn2 status. Despite the similarities between strains, the MR diet did not increase energy expenditure or reduce body fat in Gcn2-/- mice. Finally, feeding the MR diet to mice with Perk deleted in the liver increased hepatic p-eIF2 and altered body composition similar to floxed controls.Conclusions: Hepatic activation of the ISR resulting from an MR diet does not require p-eIF2. Gcn2 status influences body fat loss but not protein balance when Met is restricted.Item THE EIF2 KINASE PERK AND THE INTEGRATED STRESS RESPONSE FACILITATE ACTIVATION OF ATF6 DURING ENDOPLASMIC RETICULUM STRESS(Office of the Vice Chancellor for Research, 2012-04-13) Teske, Brian F.; Wek, Ronald C.; Wek, Sheree A.; Bunpo, Piyawan; Cundiff, Judy K.; McClintick, Jeanette N.; Anthony, Tracy G.; Wek, Ronald C.Disruptions of the endoplasmic reticulum (ER) that perturb protein folding cause ER stress and elicit an unfolded protein response (UPR) that involves changes in gene expression aimed at expanding the ER protein processing capacity and alleviating cellular injury. Three ER stress sensors PERK, ATF6, and IRE1 implement the UPR. Mutations of these ER stress sensors have been linked to diabetes, cancer and neurodegenerative diseases. Consequently, understanding the regulation of these three pathways has substantial therapeutic potential for development of biomarkers and pharmaceuticals for management of these conditions. PERK phosphorylation of eIF2 during ER stress represses protein synthesis, which prevents further influx of ER client proteins. PERK phosphorylation of eIF2 (eIF2~P) also induces preferential translation of ATF4, a transcription activator of the UPR. In this study we show that the PERK/eIF2~P/ATF4 pathway is required not only for translational control, but also activation of ATF6 and its target genes. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi for intramembrane proteolysis and activation of ATF6. As a consequence, liver-specific depletion of PERK significantly reduces both the translational and transcriptional phases of the UPR, leading to reduced protein chaperone expression, disruptions of lipid metabolism, and enhanced apoptosis. These findings show that the regulatory networks of the UPR are fully integrated, and helps explain the diverse biological defects associated with loss of PERK.Item Integration of general amino acid control and TOR regulatory pathways in yeast(2010-05) Staschke, Kirk Alan; Wek, Ronald C.; Edenberg, Howard J.; Roach, Peter J.; Bard, MartinTwo important nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC through Gcn2p phosphorylation of the translation initiation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that the GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. While Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p activates genes required for assimilation of secondary nitrogen sources, such as -amino-butyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.Item Novel targets of eiF2 kinases determine cell fate during the integrated stress response(2014-12) Baird, Thomas; Wek, Ronald C.; Turchi, John J.; Anderson, Ryan; Liu, Yunlong; Quilliam, LawrenceEukaryotic cells rapidly modulate protein synthesis in response to environmental cues through the reversible phosphorylation of eukaryotic initiation factor 2 (eIF2α~P) by a family of eIF2α kinases. The eIF2 delivers initiator Met-tRNAiMet to the translational apparatus, and eIF2α~P transforms its function from a translation initiation factor into a competitive inhibitor of the guanine nucleotide exchange factor (GEF) eIF2B, which is responsible for the recycling of eIF2-GDP to the translationally-competent eIF2-GTP state. Reduced eIF2-GTP levels lower general protein synthesis, which allows for the conservation of energy and nutrients, and a restructuring of gene expression. Coincident with global translational control, eIF2α~P directs the preferential translation of mRNA encoding ATF4, a transcriptional activator of genes important for stress remediation. The term Integrated Stress Response (ISR) describes this pathway in which multiple stresses converge to phosphorylate eIF2α and enhance synthesis of ATF4 and its downstream effectors. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2α~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKα as being subject to both translational and transcriptional induction during eIF2α~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKα mRNA involves the stress-induced relief of two inhibitory uORFs in the 5’-leader of the transcript. Also identified as being subject to preferential translation is mRNA encoding the bifunctional aminoacyl tRNA synthetase EPRS. During eIF2α~P, translational regulation of EPRS is suggested to occur through the bypass of a non-canonical upstream ORF encoded by a CUG start codon, highlighting the diversity by which upstream translation initiation events can regulate expression of a downstream coding sequence. This body of work provides for a better understanding of how translational control during stress is modulated genome-wide and for the processes by which this mode of gene regulation in the ISR contributes to cell fate.Item Role of PERK in Anchorage-Independent Growth of Colorectal Carcinoma and Cell Migration In-Vitro(2020-09) Shukla, Madhura Shirish; Wek, Ronald C.; Quilliam, Lawrence A.; Goebl, Mark G.The unfolded protein response (UPR) is important for cell adaptation to accumulation of unfolded proteins in the endoplasmic reticulum (ER). A central UPR sensor of ER stress is PKR- like ER Kinase (PERK), which phosphorylates eIF2 to reduce global translation and help mitigate ER stress. While this is a survival mechanism that serves to save the cell from catastrophic events during ER stress, PERK can also be activated in cancer cells due to genetic changes and exposure to stresses inherent in the tumor micro-environment. Published reports have indicated that PERK is activated in cancer cells in response to hypoxia, nutrient deprivation, matrix detachment, and increased protein load by oncogene activation to facilitate cell survival. The UPR features PERK and another ER stress sensory protein, IRE1α, which also regulates the dynamic assembly of the actin cytoskeleton; loss of either PERK or IRE1α functions decrease cell migration activity. We hypothesized that PERK is required for anchorage-independent survival of the cancer cell line HCT116 and that PERK is essential for cell migration. Consistent with these premises, inhibition of PERK using pharmacological inhibitors GSK2656157 and LY-4 in suspended cells showed reduced growth. Furthermore, PERK-deficient cells showed reduced migration in transwell migration assays as compared to their wild type counterpart. These results suggest that PERK facilitates anchorage-independent growth of cancer cells and cell migration.Item Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver(American Society for Biochemistry and Molecular Biology, 2018-04-06) Nikonorova, Inna A.; Mirek, Emily T.; Signore, Christina C.; Goudie, Michael P.; Wek, Ronald C.; Anthony, Tracy G.; Biochemistry and Molecular Biology, School of MedicineAmino acid availability is sensed by GCN2 (general control nonderepressible 2) and mechanistic target of rapamycin complex 1 (mTORC1), but how these two sensors coordinate their respective signal transduction events remains mysterious. In this study we utilized mouse genetic models to investigate the role of GCN2 in hepatic mTORC1 regulation upon amino acid stress induced by a single injection of asparaginase. We found that deletion of Gcn2 prevented hepatic phosphorylation of eukaryotic initiation factor 2α to asparaginase and instead unleashed mTORC1 activity. This change in intracellular signaling occurred within minutes and resulted in increased 5'-terminal oligopyrimidine mRNA translation instead of activating transcription factor 4 synthesis. Asparaginase also promoted hepatic mRNA levels of several genes which function as mTORC1 inhibitors, and these genes were blunted or blocked in the absence of Gcn2, but their timing could not explain the early discordant effects in mTORC1 signaling. Preconditioning mice with a chemical endoplasmic reticulum stress agent before amino acid stress rescued normal mTORC1 repression in the liver of Gcn2-/- mice but not in livers with both Gcn2 and the endoplasmic reticulum stress kinase, Perk, deleted. Furthermore, treating wildtype and Gcn2-/- mice with ISRIB, an inhibitor of PERK signaling, also failed to alter hepatic mTORC1 responses to asparaginase, although administration of ISRIB alone had an inhibitory GCN2-independent effect on mTORC1 activity. Taken together, the data show that activating transcription factor 4 is not required, but eukaryotic initiation factor 2α phosphorylation is necessary to prevent mTORC1 activation during amino acid stress.Item Toxoplasma gondii Co-opts the Unfolded Protein Response To Enhance Migration and Dissemination of Infected Host Cells(American Society for Microbiology, 2020-07-07) Augusto, Leonardo; Martynowicz, Jennifer; Amin, Parth H.; Alakhras, Nada S.; Kaplan, Mark H.; Wek, Ronald C.; Sullivan, William J., Jr.; Biochemistry and Molecular Biology, School of MedicineToxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here, we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further identify a novel role for the host ER stress sensor protein IRE1 in Toxoplasma pathogenesis. Upon infection, Toxoplasma activates IRE1, engaging its noncanonical role in actin remodeling through the binding of filamin A. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo. Our study has identified novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis.