- Browse by Subject
Browsing by Subject "PDGF signaling pathway"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Genetic variants of PDGF signaling pathway genes predict cutaneous melanoma survival(Impact Journals, 2017-08-14) Li, Hong; Wang, Yanru; Liu, Hongliang; Shi, Qiong; Li, Hongyu; Wu, Wenting; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Li, Yi; Han, Jiali; Wei, Qingyi; Epidemiology, School of Public HealthTo investigate whether genetic variants of platelet-derived growth factor (PDGF) signaling pathway genes are associated with survival of cutaneous melanoma (CM) patients, we assessed associations of single-nucleotide polymorphisms in PDGF pathway with melanoma-specific survival in 858 CM patients of M.D. Anderson Cancer Center (MDACC). Additional data of 409 cases from Harvard University were also included for further analysis. We identified 13 SNPs in four genes (COL6A3, NCK2, COL5A1 and PRKCD) with a nominal P < 0.05 and false discovery rate (FDR) < 0.2 in MDACC dataset. Based on linkage disequilibrium, functional prediction and minor allele frequency, a representative SNP in each gene was selected. In the meta-analysis using MDACC and Harvard datasets, there were two SNPs associated with poor survival of CM patients: rs6707820 C>T in NCK2 (HR = 1.87, 95% CI = 1.35-2.59, Pmeta = 1.53E-5); and rs2306574 T>C in PRKCD (HR = 1.73, 95% CI = 1.33-2.24, Pmeta = 4.56E-6). Moreover, CM patients in MDACC with combined risk genotypes of these two loci had markedly poorer survival (HR = 2.47, 95% CI = 1.58-3.84, P < 0.001). Genetic variants of rs6707820 C>T in NCK2 and rs2306574 T>C in PRKCD of the PDGF signaling pathway may be biomarkers for melanoma survival.Item Ten-eleven translocation protein 1 modulates medulloblastoma progression(BMC, 2021-04-29) Kim, Hyerim; Kang, Yunhee; Li, Yujing; Chen, Li; Lin, Li; Johnson, Nicholas D.; Zhu, Dan; Robinson, M. Hope; McSwain, Leon; Barwick, Benjamin G.; Yuan, Xianrui; Liao, Xinbin; Zhao, Jie; Zhang, Zhiping; Shu, Qiang; Chen, Jianjun; Allen, Emily G.; Kenney, Anna M.; Castellino, Robert C.; Van Meir, Erwin G.; Conneely, Karen N.; Vertino, Paula M.; Jin, Peng; Li, Jian; Biostatistics, School of Public HealthBackground: Medulloblastoma (MB) is the most common malignant pediatric brain tumor that originates in the cerebellum and brainstem. Frequent somatic mutations and deregulated expression of epigenetic regulators in MB highlight the substantial role of epigenetic alterations. 5-hydroxymethylcytosine (5hmC) is a highly abundant cytosine modification in the developing cerebellum and is regulated by ten-eleven translocation (TET) enzymes. Results: We investigate the alterations of 5hmC and TET enzymes in MB and their significance to cerebellar cancer formation. We show total abundance of 5hmC is reduced in MB, but identify significant enrichment of MB-specific 5hmC marks at regulatory regions of genes implicated in stem-like properties and Nanog-binding motifs. While TET1 and TET2 levels are high in MBs, only knockout of Tet1 in the smoothened (SmoA1) mouse model attenuates uncontrolled proliferation, leading to a favorable prognosis. The pharmacological Tet1 inhibition reduces cell viability and platelet-derived growth factor signaling pathway-associated genes. Conclusions: These results together suggest a potential key role of 5hmC and indicate an oncogenic nature for TET1 in MB tumorigenesis, suggesting it as a potential therapeutic target for MBs.