- Browse by Subject
Browsing by Subject "Oxygen Consumption"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human Islets and Type 2 Diabetic Islets(Oxford University Press, 2017-08-01) Ma, Kaiwen; Xiao, An; Park, So Hyun; Glenn, Lindsey; Jackson, Laura; Barot, Tatvam; Weaver, Jessica R.; Taylor-Fishwick, David A.; Luci, Diane K.; Maloney, David J.; Mirmira, Raghavendra G.; Imai, Yumi; Nadler, Jerry L.; Pediatrics, School of MedicineContext: The 12-lipoxygenase (12-LO) pathway produces proinflammatory metabolites, and its activation is implicated in islet inflammation associated with type 1 and type 2 diabetes (T2D). Objectives: We aimed to test the efficacy of ML355, a highly selective, small molecule inhibitor of 12-LO, for the preservation of islet function. Design: Human islets from nondiabetic donors were incubated with a mixture of tumor necrosis factor α , interluekin-1β, and interferon-γ to model islet inflammation. Cytokine-treated islets and human islets from T2D donors were incubated in the presence and absence of ML355. Setting: In vitro study. Participants: Human islets from organ donors aged >20 years of both sexes and any race were used. T2D status was defined from either medical history or most recent hemoglobin A1c value >6.5%. Intervention: Glucose stimulation. Main Outcome Measures: Static and dynamic insulin secretion and oxygen consumption rate (OCR). Results: ML355 prevented the reduction of insulin secretion and OCR in cytokine-treated human islets and improved both parameters in human islets from T2D donors. Conclusions: ML355 was efficacious in improving human islet function after cytokine treatment and in T2D islets in vitro. The study suggests that the blockade of the 12-LO pathway may serve as a target for both form of diabetes and provides the basis for further study of this small molecule inhibitor in vivo.Item Endurance exercise accelerates myocardial tissue oxygenation recovery and reduces ischemia reperfusion injury in mice(PLoS, 2014-12-04) Li, Yuanjing; Cai, Ming; Cao, Li; Qin, Xing; Zheng, Tiantian; Xu, Xiaohua; Sandvick, Taylor M.; Hutchinson, Kirk; Wold, Loren E.; Hu, Keli; Sun, Qinghua; Thomas, D. Paul; Ren, Ju; He, Guanglong; Department of Medicine, IU School of MedicineExercise training offers cardioprotection against ischemia and reperfusion (I/R) injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old) were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K(+)channel on vascular smooth muscle cells, VSMC sarc-K(ATP)) and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-K(ATP) channels and reperfusion recovery.