- Browse by Subject
Browsing by Subject "Oxidation-reduction"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex(Elsevier, 2022) Rafikov, Ruslan; Rischard, Franz; Vasilyev, Mikhail; Varghese, Mathews V.; Yuan, Jason X-J; Desai, Ankit A.; Garcia, Joe G.; Rafikova, Olga; Medicine, School of MedicinePulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.Item Involvement of Intermediate Sulfur Species in Biological Reduction of Elemental Sulfur under Acidic, Hydrothermal Conditions(American Society for Microbiology, 2013) Boyd, Eric S.; Druschel, Gregory K.; Earth and Environmental Sciences, School of ScienceThe thermoacidophile and obligate elemental sulfur (S(8)(0))-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S(8)(0)-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H(2)S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S(8)(0) and the biologically produced H(2)S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S(8)(0) was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S(8)(0) can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S(8)(0) provided as a solid phase in the medium or with S(8)(0) sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S(8)(0) sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S(8)(0) provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S(8)(0) particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S(8)(0) particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens.Item The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease(Elsevier, 2021) Caston, Rachel A.; Gampala, Silpa; Lee, Armstrong; Messmann, Richard A.; Fishel, Melissa L.; Kelley, Mark R.; Pediatrics, School of MedicineApurinic/apyrimidinic (AP) endonuclease-reduction/oxidation factor 1 (APE1/Ref-1, also called APE1) is a multifunctional enzyme with crucial roles in DNA repair and reduction/oxidation (redox) signaling. APE1 was originally described as an endonuclease in the Base Excision Repair (BER) pathway. Further study revealed it to be a redox signaling hub regulating critical transcription factors (TFs). Although a significant amount of focus has been on the role of APE1 in cancer, recent findings support APE1 as a target in other indications, including ocular diseases [diabetic retinopathy (DR), diabetic macular edema (DME), and age-related macular degeneration (AMD)], inflammatory bowel disease (IBD) and others, where APE1 regulation of crucial TFs impacts important pathways in these diseases. The central responsibilities of APE1 in DNA repair and redox signaling make it an attractive therapeutic target for cancer and other diseases.Item Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance(Nature Publishing Group, 2018-02-08) Wang, Hai; Gao, Zan; Liu, Xuanyou; Agarwal, Pranay; Zhao, Shuting; Conroy, Daniel W.; Ji, Guang; Yu, Jianhua; Jaroniec, Christopher P.; Liu, Zhenguo; Lu, Xiongbin; Li, Xiaodong; He, Xiaoming; Medical and Molecular Genetics, School of MedicineMultidrug resistance is a major challenge to cancer chemotherapy. The multidrug resistance phenotype is associated with the overexpression of the adenosine triphosphate (ATP)-driven transmembrane efflux pumps in cancer cells. Here, we report a lipid membrane-coated silica-carbon (LSC) hybrid nanoparticle that targets mitochondria through pyruvate, to specifically produce reactive oxygen species (ROS) in mitochondria under near-infrared (NIR) laser irradiation. The ROS can oxidize the NADH into NAD+ to reduce the amount of ATP available for the efflux pumps. The treatment with LSC nanoparticles and NIR laser irradiation also reduces the expression and increases the intracellular distribution of the efflux pumps. Consequently, multidrug-resistant cancer cells lose their multidrug resistance capability for at least 5 days, creating a therapeutic window for chemotherapy. Our in vivo data show that the drug-laden LSC nanoparticles in combination with NIR laser treatment can effectively inhibit the growth of multidrug-resistant tumors with no evident systemic toxicity