- Browse by Subject
Browsing by Subject "Oxaliplatin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1(ASBMB, 2014-07-25) Janes, Kali; Little, Joshua W.; Li, Chao; Bryant, Leesa; Chen, Collin; Chen, Zhoumou; Kamocki, Krzysztof; Doyle, Timothy; Snider, Ashley; Esposito, Emanuela; Cuzzocrea, Salvatore; Bieberich, Erhard; Obedi, Lina; Petrache, Irina; Nicol, Grant; Neumann, William L.; Salvemini, Daniela; Department of Pharmacology and Toxicology, IU School of MedicineThe ceramide-sphingosine 1-phosphate (S1P) rheostat is important in regulating cell fate. Several chemotherapeutic agents, including paclitaxel (Taxol), involve pro-apoptotic ceramide in their anticancer effects. The ceramide-to-S1P pathway is also implicated in the development of pain, raising the intriguing possibility that these sphingolipids may contribute to chemotherapy- induced painful peripheral neuropathy, which can be a critical dose-limiting side effect of many widely used chemotherapeutic agents.We demonstrate that the development of paclitaxel-induced neuropathic pain was associated with ceramide and S1P formation in the spinal dorsal horn that corresponded with the engagement of S1P receptor subtype 1 (S1PR(1))- dependent neuroinflammatory processes as follows: activation of redox-sensitive transcription factors (NFκB) and MAPKs (ERK and p38) as well as enhanced formation of pro-inflammatory and neuroexcitatory cytokines (TNF-α and IL-1β). Intrathecal delivery of the S1PR1 antagonist W146 reduced these neuroinflammatory processes but increased IL-10 and IL-4, potent anti-inflammatory/ neuroprotective cytokines. Additionally, spinal W146 reversed established neuropathic pain. Noteworthy, systemic administration of the S1PR1 modulator FTY720 (Food and Drug Administration- approved for multiple sclerosis) attenuated the activation of these neuroinflammatory processes and abrogated neuropathic pain without altering anticancer properties of paclitaxel and with beneficial effects extended to oxaliplatin. Similar effects were observed with other structurally and chemically unrelated S1PR1 modulators (ponesimod and CYM-5442) and S1PR1 antagonists (NIBR-14/15) but not S1PR1 agonists (SEW2871). Our findings identify for the first time the S1P/S1PR1 axis as a promising molecular and therapeutic target in chemotherapy-induced painful peripheral neuropathy, establish a mechanistic insight into the biomolecular signaling pathways, and provide the rationale for the clinical evaluation of FTY720 in chronic pain patients.Item Inhibitory Effects of Columbianadin on Nociceptive Behaviors in a Neuropathic Pain Model, and on Voltage-Gated Calcium Currents in Dorsal Root Ganglion Neurons in Mice(Frontiers Media, 2020-01-09) Su, Xiaolin; Wu, Bin; Zhang, Wentong; Ji, Yong-Hua; Wang, Qiuhong; Tan, Zhi-Yong; Pharmacology and Toxicology, School of MedicineRadix angelicae pubescentis (RAP) has been used in Chinese traditional medicine to treat painful diseases such as rheumatism and headache. A previous study has reported that columbianadin (CBN), a major coumarin in RAP inhibits acute and inflammatory pain behaviors. However, the effects of CBN on neuropathic pain behaviors, and the potential underlying mechanism have not been reported. In the present study, the effects of CBN, compared to another major coumarin of RAP osthole (OST), on oxaliplatin-induced neuropathic pain behaviors and on the voltage-gated calcium currents in small dorsal root ganglion (DRG) neurons were studied in mice. It was found that CBN and OST inhibited both mechanical and cold hypersensitivity induced by oxaliplatin. Moreover, CBN and OST might preferentially inhibit T- and L-type calcium currents (Ica). The inhibitory effects of CBN and OST on the oxaliplatin-induced mechanical allodynia were prevented by gabapentin. These results suggest that CBN, as well as OST might inhibit neuropathic pain behaviors through an inhibition of T- and L-type calcium currents in nociceptive DRG neurons.Item Oxaliplatin Depolarizes the IB4– Dorsal Root Ganglion Neurons to Drive the Development of Neuropathic Pain Through TRPM8 in Mice(Frontiers Media, 2021-06-04) Wu, Bin; Su, Xiaolin; Zhang, Wentong; Zhang, Yi-Hong; Feng, Xinghua; Ji, Yong-Hua; Tan, Zhi-Yong; Pharmacology and Toxicology, School of MedicineUse of chemotherapy drug oxaliplatin is associated with painful peripheral neuropathy that is exacerbated by cold. Remodeling of ion channels including TRP channels in dorsal root ganglion (DRG) neurons contribute to the sensory hypersensitivity following oxaliplatin treatment in animal models. However, it has not been studied if TRP channels and membrane depolarization of DRG neurons serve as the initial ionic/membrane drives (such as within an hour) that contribute to the development of oxaliplatin-induced neuropathic pain. In the current study, we studied in mice (1) in vitro acute effects of oxaliplatin on the membrane excitability of IB4+ and IB4– subpopulations of DRG neurons using a perforated patch clamping, (2) the preventative effects of a membrane-hyperpolarizing drug retigabine on oxaliplatin-induced sensory hypersensitivity, and (3) the preventative effects of TRP channel antagonists on the oxaliplatin-induced membrane hyperexcitability and sensory hypersensitivity. We found (1) IB4+ and IB4– subpopulations of small DRG neurons displayed previously undiscovered, substantially different membrane excitability, (2) oxaliplatin selectively depolarized IB4– DRG neurons, (3) pretreatment of retigabine largely prevented oxaliplatin-induced sensory hypersensitivity, (4) antagonists of TRPA1 and TRPM8 channels prevented oxaliplatin-induced membrane depolarization, and (5) the antagonist of TRPM8 largely prevented oxaliplatin-induced sensory hypersensitivity. These results suggest that oxaliplatin depolarizes IB4– neurons through TRPM8 channels to drive the development of neuropathic pain and targeting the initial drives of TRPM8 and/or membrane depolarization may prevent oxaliplatin-induce neuropathic pain.Item Pathological Complete Response in Patients With Resected Pancreatic Adenocarcinoma After Preoperative Chemotherapy(American Medical Association, 2024-06-03) Stoop, Thomas F.; Oba, Atsushi; Wu, Y. H. Andrew; Beaty, Laurel E.; Colborn, Kathryn L.; Janssen, Boris V.; Al-Musawi, Mohammed H.; Rodriguez Franco, Salvador; Sugawara, Toshitaka; Franklin, Oskar; Jain, Ajay; Saiura, Akio; Sauvanet, Alain; Coppola, Alessandro; Javed, Ammar A.; Groot Koerkamp, Bas; Miller, Braden N.; Mack, Claudia E.; Hashimoto, Daisuke; Caputo, Damiano; Kleive, Dyre; Sereni, Elisabetta; Belfiori, Giulio; Ichida, Hirofumi; van Dam, Jacob L.; Dembinski, Jeanne; Akahoshi, Keiichi; Roberts, Keith J.; Tanaka, Kimitaka; Labori, Knut J.; Falconi, Massimo; House, Michael G.; Sugimoto, Motokazu; Tanabe, Minoru; Gotohda, Naoto; Krohn, Paul S.; Burkhart, Richard A.; Thakkar, Rohan G.; Pande, Rupaly; Dokmak, Safi; Hirano, Satoshi; Burgdorf, Stefan K.; Crippa, Stefano; van Roessel, Stijn; Satoi, Sohei; White, Steven A.; Hackert, Thilo; Nguyen, Trang K.; Yamamoto, Tomohisa; Nakamura, Toru; Bachu, Vismaya; Burns, William R.; Inoue, Yosuke; Takahashi, Yu; Ushida, Yuta; Aslami, Zohra V.; Verbeke, Caroline S.; Fariña, Arantza; He, Jin; Wilmink, Johanna W.; Messersmith, Wells; Verheij, Joanne; Kaplan, Jeffrey; Schulick, Richard D.; Besselink, Marc G.; Del Chiaro, Marco; Surgery, School of MedicineImportance: Preoperative chemo(radio)therapy is increasingly used in patients with localized pancreatic adenocarcinoma, leading to pathological complete response (pCR) in a small subset of patients. However, multicenter studies with in-depth data about pCR are lacking. Objective: To investigate the incidence, outcome, and risk factors of pCR after preoperative chemo(radio)therapy. Design, setting, and participants: This observational, international, multicenter cohort study assessed all consecutive patients with pathology-proven localized pancreatic adenocarcinoma who underwent resection after 2 or more cycles of chemotherapy (with or without radiotherapy) in 19 centers from 8 countries (January 1, 2010, to December 31, 2018). Data collection was performed from February 1, 2020, to April 30, 2022, and analyses from January 1, 2022, to December 31, 2023. Median follow-up was 19 months. Exposures: Preoperative chemotherapy (with or without radiotherapy) followed by resection. Main outcomes and measures: The incidence of pCR (defined as absence of vital tumor cells in the sampled pancreas specimen after resection), its association with OS from surgery, and factors associated with pCR. Factors associated with overall survival (OS) and pCR were investigated with Cox proportional hazards and logistic regression models, respectively. Results: Overall, 1758 patients (mean [SD] age, 64 [9] years; 879 [50.0%] male) were studied. The rate of pCR was 4.8% (n = 85), and pCR was associated with OS (hazard ratio, 0.46; 95% CI, 0.26-0.83). The 1-, 3-, and 5-year OS rates were 95%, 82%, and 63% in patients with pCR vs 80%, 46%, and 30% in patients without pCR, respectively (P < .001). Factors associated with pCR included preoperative multiagent chemotherapy other than (m)FOLFIRINOX ([modified] leucovorin calcium [folinic acid], fluorouracil, irinotecan hydrochloride, and oxaliplatin) (odds ratio [OR], 0.48; 95% CI, 0.26-0.87), preoperative conventional radiotherapy (OR, 2.03; 95% CI, 1.00-4.10), preoperative stereotactic body radiotherapy (OR, 8.91; 95% CI, 4.17-19.05), radiologic response (OR, 13.00; 95% CI, 7.02-24.08), and normal(ized) serum carbohydrate antigen 19-9 after preoperative therapy (OR, 3.76; 95% CI, 1.79-7.89). Conclusions and relevance: This international, retrospective cohort study found that pCR occurred in 4.8% of patients with resected localized pancreatic adenocarcinoma after preoperative chemo(radio)therapy. Although pCR does not reflect cure, it is associated with improved OS, with a doubled 5-year OS of 63% compared with 30% in patients without pCR. Factors associated with pCR related to preoperative chemo(radio)therapy regimens and anatomical and biological disease response features may have implications for treatment strategies that require validation in prospective studies because they may not universally apply to all patients with pancreatic adenocarcinoma.Item Radioembolization With Chemotherapy for Colorectal Liver Metastases: A Randomized, Open-Label, International, Multicenter, Phase III Trial(American Society of Clinical Oncology, 2021) Mulcahy, Mary F.; Mahvash, Armeen; Pracht, Marc; Montazeri, Amir H.; Bandula, Steve; Martin, Robert C. G., II; Herrmann, Ken; Brown, Ewan; Zuckerman, Darryl; Wilson, Gregory; Kim, Tae-You; Weaver, Andrew; Ross, Paul; Harris, William P.; Graham, Janet; Mills, Jamie; Yubero Esteban, Alfonso; Johnson, Matthew S.; Sofocleous, Constantinos T.; Padia, Siddharth A.; Lewandowski, Robert J.; Garin, Etienne; Sinclair, Philip; Salem, Riad; EPOCH Investigators; Radiology and Imaging Sciences, School of MedicinePurpose: To study the impact of transarterial Yttrium-90 radioembolization (TARE) in combination with second-line systemic chemotherapy for colorectal liver metastases (CLM). Methods: In this international, multicenter, open-label phase III trial, patients with CLM who progressed on oxaliplatin- or irinotecan-based first-line therapy were randomly assigned 1:1 to receive second-line chemotherapy with or without TARE. The two primary end points were progression-free survival (PFS) and hepatic PFS (hPFS), assessed by blinded independent central review. Random assignment was performed using a web- or voice-based system stratified by unilobar or bilobar disease, oxaliplatin- or irinotecan-based first-line chemotherapy, and KRAS mutation status. Results: Four hundred twenty-eight patients from 95 centers in North America, Europe, and Asia were randomly assigned to chemotherapy with or without TARE; this represents the intention-to-treat population and included 215 patients in the TARE plus chemotherapy group and 213 patients in the chemotherapy alone group. The hazard ratio (HR) for PFS was 0.69 (95% CI, 0.54 to 0.88; 1-sided P = .0013), with a median PFS of 8.0 (95% CI, 7.2 to 9.2) and 7.2 (95% CI, 5.7 to 7.6) months, respectively. The HR for hPFS was 0.59 (95% CI, 0.46 to 0.77; 1-sided P < .0001), with a median hPFS of 9.1 (95% CI, 7.8 to 9.7) and 7.2 (95% CI, 5.7 to 7.6) months, respectively. Objective response rates were 34.0% (95% CI, 28.0 to 40.5) and 21.1% (95% CI, 16.2 to 27.1; 1-sided P = .0019) for the TARE and chemotherapy groups, respectively. Median overall survival was 14.0 (95% CI, 11.8 to 15.5) and 14.4 months (95% CI, 12.8 to 16.4; 1-sided P = .7229) with a HR of 1.07 (95% CI, 0.86 to 1.32) for TARE and chemotherapy groups, respectively. Grade 3 adverse events were reported more frequently with TARE (68.4% v 49.3%). Both groups received full chemotherapy dose intensity. Conclusion: The addition of TARE to systemic therapy for second-line CLM led to longer PFS and hPFS. Further subset analyses are needed to better define the ideal patient population that would benefit from TARE.