- Browse by Subject
Browsing by Subject "Osteoprotegerin"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item GATA-1 deficiency rescues trabecular but not cortical bone in OPG deficient mice(Wiley Blackwell (John Wiley & Sons), 2015-04) Meijome, Tomas E.; Hooker, R. Adam; Cheng, Ying-Hua; Walker, Whitney; Horowitz, Mark C.; Fuchs, Robyn K.; Kacena, Melissa A.; Department of Surgery, IU School of MedicineGATA-1(low/low) mice have an increase in megakaryocytes (MKs) and trabecular bone. The latter is thought to result from MKs directly stimulating osteoblastic bone formation while simultaneously inhibiting osteoclastogenesis. Osteoprotegerin (OPG) is known to inhibit osteoclastogenesis and OPG(-/-) mice have reduced trabecular and cortical bone due to increased osteoclastogenesis. Interestingly, GATA-1(low/low) mice have increased OPG levels. Here, we sought to determine whether GATA-1 knockdown in OPG(-/-) mice could rescue the observed osteoporotic bone phenotype. GATA-1(low/low) mice were bred with OPG(-/-) mice and bone phenotype assessed. GATA-1(low/low) × OPG(-/-) mice have increased cortical bone porosity, similar to OPG(-/-) mice. Both OPG(-/-) and GATA-1(low/low) × OPG(-/-) mice, were found to have increased osteoclasts localized to cortical bone, possibly producing the observed elevated porosity. Biomechanical assessment indicates that OPG(-/-) and GATA-1(low/low) × OPG(-/-) femurs are weaker and less stiff than C57BL/6 or GATA-1(low/low) femurs. Notably, GATA-1(low/low) × OPG(-/-) mice had trabecular bone parameters that were not different from C57BL/6 values, suggesting that GATA-1 deficiency can partially rescue the trabecular bone loss observed with OPG deficiency. The fact that GATA-1 deficiency appears to be able to partially rescue the trabecular, but not the cortical bone phenotype suggests that MKs can locally enhance trabecular bone volume, but that MK secreted factors cannot access cortical bone sufficiently to inhibit osteoclastogenesis or that OPG itself is required to inhibit osteoclastogenesis in cortical bone.Item Juvenile Paget’s Disease From Heterozygous Mutation of SP7 Encoding Osterix (Specificity Protein 7, Transcription Factor Sp7)(Elsevier, 2020-08) Whyte, Michael P.; Campeau, Philippe M.; McAlister, William H.; Roodman, G. David; Kurihara, Nori; Nenninger, Angela; Duan, Shenghui; Gottesman, Gary S.; Bijanki, Vinieth N.; Sedighi, Homer; Veis, Deborah J.; Mumm, Steven; Medicine, School of MedicineJuvenile Paget's disease (JPD) became in 1974 the commonly used name for ultra-rare heritable occurrences of rapid bone remodeling throughout of the skeleton that present in infancy or early childhood as fractures and deformity hallmarked biochemically by marked elevation of serum alkaline phosphatase (ALP) activity (hyperphosphatasemia). Untreated, JPD can kill during childhood or young adult life. In 2002, we reported that homozygous deletion of the gene called tumor necrosis factor receptor superfamily, member 11B (TNFRSF11B) encoding osteoprotegerin (OPG) explained JPD in Navajos. Soon after, other bi-allelic loss-of-function TNFRSF11B defects were identified in JPD worldwide. OPG inhibits osteoclastogenesis and osteoclast activity by decoying receptor activator of nuclear factor κ-B (RANK) ligand (RANKL) away from its receptor RANK. Then, in 2014, we reported JPD in a Bolivian girl caused by a heterozygous activating duplication within TNFRSF11A encoding RANK. Herein, we identify mutation of a third gene underlying JPD. An infant girl began atraumatic fracturing of her lower extremity long-bones. Skull deformity and mild hearing loss followed. Our single investigation of the patient, when she was 15 years-of-age, showed generalized osteosclerosis and hyperostosis. DXA revealed a Z-score of +5.1 at her lumbar spine and T-score of +3.3 at her non-dominant wrist. Biochemical studies were consistent with positive mineral balance and several markers of bone turnover were elevated and included striking hyperphosphatasemia. Iliac crest histopathology was consistent with rapid skeletal remodeling. Measles virus transcripts, common in classic Paget's disease of bone, were not detected in circulating mononuclear cells. Then, reportedly, she responded to several months of alendronate therapy with less skeletal pain and correction of hyperphosphatasemia but had been lost to our follow-up. After we detected no defect in TNFRSF11A or B, trio exome sequencing revealed a de novo heterozygous missense mutation (c.926C>G; p.S309W) within SP7 encoding the osteoblast transcription factor osterix (specificity protein 7, transcription factor SP7). Thus, mutation of SP7 represents a third genetic cause of JPD.Item Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice(Oxford University Press, 2016-02) Alam, Imranul; Alkhouli, Mohammed; Gerard-O'Riley, Rita L.; Wright, Weston B.; Acton, Dena; Gray, Amie K.; Patel, Bhavmik; Reilly, Austin M.; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.; Department of Medicine, IU School of MedicinePrevious genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to Rankl ratio in bone tissue in the TG mice compared with WT littermates. Our data indicate that WNT16 is critical for positive regulation of both cortical and trabecular bone mass and structure and that this molecule might be targeted for therapeutic interventions to treat osteoporosis.Item Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin(CSH Press, 2015-04-15) Wu, Colleen; Rankin, Erinn B.; Castellini, Laura; Fernandez-Alcudia, Javier; LaGory, Edward L.; Andersen, Rebecca; Rhodes, Steven D.; Wilson, Tremika L.S.; Mohammad, Khalid S.; Castillo, Alesha B.; Guise, Theresa; Schipani, Ernestina; Giaccia, Amato J.; Department of Medicine, IU School of MedicineThe bone microenvironment is composed of niches that house cells across variable oxygen tensions. However, the contribution of oxygen gradients in regulating bone and blood homeostasis remains unknown. Here, we generated mice with either single or combined genetic inactivation of the critical oxygen-sensing prolyl hydroxylase (PHD) enzymes (PHD1–3) in osteoprogenitors. Hypoxia-inducible factor (HIF) activation associated with Phd2 and Phd3 inactivation drove bone accumulation by modulating osteoblastic/osteoclastic cross-talk through the direct regulation of osteoprotegerin (OPG). In contrast, combined inactivation of Phd1, Phd2, and Phd3 resulted in extreme HIF signaling, leading to polycythemia and excessive bone accumulation by overstimulating angiogenic–osteogenic coupling. Wealso demonstrate that genetic ablation of Phd2 and Phd3 was sufficient to protect ovariectomized mice against bone loss without disrupting hematopoietic homeostasis. Importantly,we identify OPG as a HIF target gene capable of directing osteoblast-mediated osteoclastogenesis to regulate bone homeostasis. Here, we show that coordinated activation of specific PHD isoforms fine-tunes the osteoblastic response to hypoxia, thereby directing two important aspects of bone physiology: cross-talk between osteoblasts and osteoclasts and angiogenic–osteogenic coupling.Item Pathways in external apical root resorption associated with orthodontia(Wiley, 2009-08) Hartsfield Jr., J.K.; Department of Orthodontics and Oral Facial Genetics, IU School of DentistryTo review studies investigating if genetic factors play a role in external apical root resorption (EARR) during orthodontic treatment. Heritability estimation in human sib-pairs, comparison of multiple inbred mouse strains, human sib-pair linkage and parents-child trio association studies, and two gene (Il-1b, and P2rx7) knock out mouse models. Heritability for EARR of the maxillary central incisors concurrent with orthodontic treatment is 0.8. DBA/2J, BALB/cJ, and 129P3/J inbred mouse strains are highly susceptible (p < .05) to histological root resorption (RR) associated with orthodontic force (RRAOF), whereas A/J, C57BL/6J and SJL/J mice are resistant. Non-parametric sibling pair linkage analysis identified evidence of linkage (LOD = 2.5; p = 0.02) of EARR with microsatellite D18S64 (tightly linked to TNFRSF11A, also known as RANK). There is significant linkage disequilibrium of IL-1B (p = 0.0003), and OPG (p = 0.003) with EARR. RRAOF increases in Il1b KO (p < or = 0.013), and increases in P2rx7 KO (p < 0.02) mice compared to wild-type. Genetic factors play a marked role in EARR concurrent with orthodontic force, accounting for one-half to two-thirds of the variation. Two pathways for this may involve: 1) activation control of osteoclasts through the ATP/P2XR7/IL-1B inflammation modulation pathway; and 2) RANK/RANKL/OPG osteoclast activation control. Histological RR occurs and is typically healed. If resorption outpaces healing, then EARR develops. Normal and parafunctional forces, as well as orthodontic forces, may add to or interact with the individual's susceptibility to pass the threshold of developing EARR.Item The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts(Elsevier B.V., 2014-03) Huang, Su; Eleniste, Pierre P.; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A.; Mains, Richard E.; Allen, Matthew R.; Bruzzaniti, Angela; Department of Oral Biology, IU School of DentistryBone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36 week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14 week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass.Item Sleep-disordered breathing is associated with depletion of circulating endothelial progenitor cells and elevation in pulmonary arterial pressure in patients with decompensated systolic heart failure(SciencePress, 2015-07) Zhang, Han; Feng, Liu; Wan, Qi-Lin; Hong, Yan; Li, Yan-Ming; Cheng, Guan-Chang; Han, Xin-Qiang; Department of Medicine, IU School of MedicineBACKGROUND: Sleep-disordered breathing (SDB) is known to occur frequently in and may predict worsening progression of patients with congestive heart failure (CHF). SDB is also known to play an important role in the development of idiopathic pulmonary arterial hypertension (PAH) via inducing endothelial dysfunction and vascular remodeling, a pathological process that can be significantly influenced by factors such as osteoprotegerin (OPG) and endothelial progenitor cells (EPCs). The objective of this study is to determine if CHF with SDB is associated with changes in OPG, EPCs, and PAH. METHODS: EPCs were isolated, cultured, and quantified from CHF patients with SDB (n = 52), or without SDB (n = 68). OPG and N-terminal pro-brain natriuretic peptide (NT-proBNP) from each group was analyzed and correlated with EPCs and the mean pulmonary artery pressure (mPAP) measured by right heart catheterization. RESULTS: A significant decrease in circulating EPCs (29.30 ± 9.01 vs. 45.17 ± 10.51 EPCs/× 200 field; P < 0.05) was found in CHF patients with SDB compared to those without SDB. Both OPG (789.83 ± 89.38 vs. 551.29 ± 42.12 pg/mL; P < 0.05) and NT-proBNP (5946.50 ± 1434.50 vs. 3028.60 ± 811.90 ng/mL; P < 0.05) were also significantly elevated in SDB CHF patients who also had significantly elevated mPAP (50.2 ± 9.5 vs. 36.4 ± 4.1 mm Hg; P < 0.05). EPC numbers correlated inversely with the episodes of apnea and hypopnea per hour (RDI, r = -0.45, P = 0.037) and blood level of OPG (r = -0.53, P = 0.011). Although NT-proBNP was also increased significantly in patients with SDB, it had no correlation with either EPCs or RDI. CONCLUSIONS: SDB due to hypoxemia from decompensated CHF is associated with (1) OPG elevation, (2) EPC depletion, and (3) mPAP elevation. The inverse relationship of circulating OPG with EPCs suggests a likely mechanism for hypoxemia and OPG in the development of pulmonary vascular dysfunction via depleting EPCs, thus worsening prognosis of CHF.