- Browse by Subject
Browsing by Subject "Osteoimmunology"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection(Springer Nature, 2022-11-04) Yoshimoto, Tetsuya; Kittaka, Mizuho; Doan, Andrew Anh Phuong; Urata, Rina; Prideaux, Matthew; Rojas, Roxana E.; Harding, Clifford V.; Boom, W. Henry; Bonewald, Lynda F.; Greenfield, Edward M.; Ueki, Yasuyoshi; Biomedical Sciences and Comprehensive Care, School of DentistryThe impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.Item Sclerostin Depletion Induces Inflammation in the Bone Marrow of Mice(MDPI, 2021-08-24) Donham, Cristine; Chicana, Betsabel; Robling, Alexander G.; Mohamed, Asmaa; Elizaldi, Sonny; Chi, Michael; Freeman, Brian; Millan, Alberto; Murugesh, Deepa K.; Hum, Nicholas R.; Sebastian, Aimy; Loots, Gabriela G.; Manilay, Jennifer O.; Anatomy and Cell Biology, School of MedicineRomosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost−/−) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost−/− mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost−/− chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost−/− BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost−/− mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.Item Single-cell RNAseq provides insight into altered immune cell populations in human fracture nonunions(Wiley, 2023) Avin, Keith G.; Dominguez, James M., II; Chen, Neal X.; Hato, Takashi; Myslinski, Jered J.; Gao, Hongyu; Liu, Yunlong; McKinley, Todd O.; Brown, Krista M.; Moe, Sharon M.; Natoli, Roman M.; Physical Therapy, School of Health and Human SciencesNonunion describes bone fractures that fail to heal, resulting in the fracture callus failing to fully ossify or, in atrophic cases, not forming altogether. Fracture healing is regulated, in part, by the balance of proinflammatory and anti-inflammatory processes occurring within the bone marrow and surface cell populations. We sought to further understand the role of osteoimmunology (i.e., study of the close relationship between the immune system and bone) by examining immune cell gene expression via single-cell RNA sequencing of intramedullary canal tissue obtained from human patients with femoral nonunions. Intramedullary canal tissue samples obtained by reaming were collected at the time of surgical repair for femur fracture nonunion (n = 5) or from native bone controls when harvesting autologous bone graft (n = 4). Cells within the samples were isolated and analyzed using the Chromium Single-Cell System (10x Genomics Inc.) and Illumina sequencers. Twenty-three distinct cell clusters were identified, with higher cell proportions in the nonunion samples for monocytes and CD14 + dendritic cells (DCs), and lower proportions of T cells, myelocytes, and promyelocytes in nonunion samples. Gene expression differences were identified in each of the cell clusters from cell types associated with osteoimmunology, including CD14 + DC, monocytes, T cells, promyelocytes, and myelocytes. These results provide human-derived gene profiles that can further our understanding of pathways that may be a cause or a consequence of nonunion, providing the clinical rationale to focus on specific components of osteoimmunology. Clinical significance: The novel single-cell approach may lead to clinically relevant diagnostic biomarkers during earlier stages of nonunion development and/or investigation into therapeutic options.Item Tlr2/4‐Mediated Hyperinflammation Promotes Cherubism‐Like Jawbone Expansion in Sh3bp2 (P416R) Knockin Mice(Wiley, 2021-10-30) Fujii, Yasuyuki; Monteiro, Nelson; Sah, Shyam Kishor; Javaheri, Homan; Ueki, Yasuyoshi; Fan, Zhichao; Reichenberger, Ernst J.; Chen, I-Ping; Biomedical and Applied Sciences, School of DentistryCherubism (CBM), characterized by expansile jawbones with multilocular fibrocystic lesions, is caused by gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2; mouse orthologue Sh3bp2). Loss of jawbone and dental integrity significantly decrease the quality of life for affected children. Treatment for CBM is limited to multiple surgeries to correct facial deformities. Despite significant advances made with CBM knockin (KI) mouse models (Sh3bp2 KI/KI ), the activation mechanisms of CBM lesions remain unknown because mutant mice do not spontaneously develop expansile jawbones. We hypothesize that bony inflammation of an unknown cause triggers jawbone expansion in CBM. To introduce jawbone inflammation in a spatiotemporally controlled manner, we exposed pulp of the first right mandibular molar of 6-week-old Sh3bp2 +/+ , Sh3bp2 KI/+ , and Sh3bp2 KI/KI mice. Bacterial invasion from the exposed pulp into root canals led to apical periodontitis in wild-type and mutant mice. The pathogen-associated molecular patterns (PAMPs)-induced inflammation of alveolar bone resulted in jawbone expansion in Sh3bp2 KI/+ and Sh3bp2 KI/KI mice. CBM-like lesions developed exacerbated inflammation with increased neutrophil, macrophage, and osteoclast numbers. These lesions displayed excessive neutrophil extracellular traps (NETs) compared to Sh3bp2 +/+ mice. Expression levels of IL-1β, IL-6, and TNF-α were increased in periapical lesions of Sh3bp2 +/+ , Sh3bp2 KI/+ , and Sh3bp2 KI/KI mice and also in plasma and the left untreated mandibles (with no pulp exposure) of Sh3bp2 KI/KI mice, suggesting a systemic upregulation. Ablation of Tlr2/4 signaling or depletion of neutrophils by Ly6G antibodies ameliorated jawbone expansion induced by PAMPs in Sh3bp2 KI/KI mice. In summary, successful induction of CBM-like lesions in jaws of CBM mice is important for studying initiating mechanisms of CBM and for testing potential therapies. Our findings further emphasize a critical role of host immunity in the development of apical periodontitis and the importance of maintaining oral health in CBM patients.