- Browse by Subject
Browsing by Subject "Osteoblast"
Now showing 1 - 10 of 33
Results Per Page
Sort Options
Item Blocking the ZZ domain of sequestosome1/p62 suppresses myeloma growth and osteoclast formation in vitro and induces dramatic bone formation in myeloma-bearing bones in vivo(SpringerNature, 2016-02) Teramachi, Jumpei; Silbermann, Rebecca; Yang, Peng; Zhao, Wei; Mohammad, Khalid S.; Guo, Jianxia; Anderson, Judith L.; Zhou, Dan; Feng, Rentian; Myint, Kyaw-Zeyar; Maertz, Nathan; Beumer, Jan H.; Eiseman, Julie L.; Windle, Jolene J.; Xie, Xiang-Qun; Roodman, G. David; Kurihara, Noriyoshi; Department of Medicine, IU School of MedicineWe reported that p62 (sequestosome 1) serves as a signaling hub in bone marrow stromal cells (BMSCs) for the formation of signaling complexes, including NFκB, p38MAPK and JNK, that are involved in the increased osteoclastogenesis and multiple myeloma (MM) cell growth induced by BMSCs that are key contributors to multiple myeloma bone disease (MMBD), and demonstrated that the ZZ domain of p62 (p62-ZZ) is required for BMSC enhancement of MMBD. We recently identified a novel p62-ZZ inhibitor, XRK3F2, which inhibits MM cell growth and BMSC growth enhancement of human MM cells. In the current study, we evaluate the relative specificity of XRK3F2 for p62-ZZ, characterize XRK3F2's capacity to inhibit growth of primary MM cells and human MM cell lines, and test the in vivo effects of XRK3F2 in the immunocompetent 5TGM1 MM model. We found that XRK3F2 induces dramatic cortical bone formation that is restricted to MM containing bones and blocked the effects and upregulation of tumor necrosis factor alpha (TNFα), an osteoblast (OB) differentiation inhibitor that is increased in the MM bone marrow microenvironment and utilizes signaling complexes formed on p62-ZZ, in BMSC. Interestingly, XRK3F2 had no effect on non-MM bearing bone. These results demonstrate that targeting p62 in MM models has profound effects on MMBD.Item CD166 modulates disease progression and osteolytic disease in multiple myeloma(2016-03-16) Xu, Linlin; Xu, LinlinMultiple myeloma (MM) is an incurable malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM) and by multiple osteolytic lesions throughout the skeleton. We previously reported that CD166 is a functional molecule on normal hematopoietic stem cells (HSC) that plays a critical role in HSC homing and engraftment, suggesting that CD166 is involved in HSC trafficking and lodgment. CD166, a member of the immunoglobulin superfamily capable of mediating homophilic interactions, has been shown to enhance metastasis and invasion in several tumors. However, whether CD166 is involved in MM and plays a role in MM progression has not been addressed. We demonstrated that a fraction of all human MM cell lines tested and MM patients’ BM CD138+ cells express CD166. Additionally, CD166+ cells preferentially home to the BM of NSG mice. Knocking-down (KD) CD166 expression on MM cells with shRNA reduced their homing to the BM. Furthermore, in a long-term xenograft model, NSG mice inoculated with CD166KD cells showed delayed disease progression and prolonged survival compared to mice receiving mock transduced cells. To examine the potential role of CD166 in osteolytic lesions, we first used a novel Ex Vivo Organ Culture Assay (EVOCA) which creates an in vitro 3D system for the interaction of MM cells with the bone microenvironment. EVOCA data from MM cells lines as well as from primary MM patients’ CD138+ BM cells demonstrated that bone osteolytic resorption was significantly reduced when CD166 was absent on MM cells or calvarial cells. We then confirmed our ex vivo findings with intra-tibial inoculation of MM cells in vivo. Mice inoculated with CD166KD cells had significantly less osteolytic lesions. Further analysis demonstrated that CD166 expression on MM cells alters bone remodeling by inhibiting RUNX2 gene expression in osteoblast precursors and increasing RANKL to OPG ratio in osteoclast precursors. We also identified that CD166 is indispensable for osteoclastogenesis via the activation of TRAF6-dependent signaling pathways. These results suggest that CD166 directs MM cell homing to the BM and promotes MM disease progression and osteolytic disease. CD166 may serve as a therapeutic target in the treatment of MM.Item Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia(Wiley, 2016-06) Clinkenbeard, Erica L.; Cass, Taryn A.; Ni, Pu; Hum, Julia M.; Bellido, Teresita; Allen, Matthew R.; White, Kenneth E.; Department of Medical and Molecular Genetics, School of MedicineThe transgenic and knockout (KO) animals involving Fgf23 have been highly informative in defining novel aspects of mineral metabolism, but are limited by shortened lifespan, inability of spatial/temporal FGF23 control, and infertility of the global KO. To more finely test the role of systemic and genetic influences in FGF23 production, a mouse was developed that carried a floxed ("f")-Fgf23 allele (exon 2 floxed) which demonstrated in vivo recombination when bred to global-Cre transgenic mice (eIIa-cre). Mice homozygous for the recombined allele ("Δ") had undetectable serum intact FGF23, elevated serum phosphate (p < 0.05), and increased kidney Cyp27b1 mRNA (p < 0.05), similar to global Fgf23-KO mice. To isolate cellular FGF23 responses during phosphate challenge, Fgf23(Δ/f) mice were mated with early osteoblast type Iα1 collagen 2.3-kb promoter-cre mice (Col2.3-cre) and the late osteoblast/early osteocyte Dentin matrix protein-1-cre (Dmp1-cre). Fgf23(Δ/f) /Col2.3-cre(+) and Fgf23(Δ/f) /Dmp1-cre(+) exhibited reduced baseline serum intact FGF23 versus controls. After challenge with high-phosphate diet Cre(-) mice had 2.1-fold to 2.5-fold increased serum FGF23 (p < 0.01), but Col2.3-cre(+) mice had no significant increase, and Dmp1-cre(+) mice had only a 37% increase (p < 0.01) despite prevailing hyperphosphatemia in both models. The Fgf23(Δ/f) /Col2.3-cre was bred onto the Hyp (murine X-linked hypophosphatemia [XLH] model) genetic background to test the contribution of osteoblasts and osteocytes to elevated FGF23 and Hyp disease phenotypes. Whereas Hyp mice maintained inappropriately elevated FGF23 considering their marked hypophosphatemia, Hyp/Fgf23(Δ/f) /Col2.3-cre(+) mice had serum FGF23 <4% of Hyp (p < 0.01), and this targeted restriction normalized serum phosphorus and ricketic bone disease. In summary, deleting FGF23 within early osteoblasts and osteocytes demonstrated that both cell types contribute to baseline circulating FGF23 concentrations, and that targeting osteoblasts/osteocytes for FGF23 production can modify systemic responses to changes in serum phosphate concentrations and rescue the Hyp genetic syndrome.Item Differential Iron Requirements for Osteoblast and Adipocyte Differentiation(Wiley, 2021-07-26) Edwards, Daniel F., III.; Miller, Christopher J.; Quintana-Martinez, Arelis; Wright, Christian S.; Prideaux, Matthew; Atkins, Gerald J.; Thompson, William R.; Clinkenbeard, Erica L.; Medical and Molecular Genetics, School of MedicineBone marrow mesenchymal progenitor cells are precursors for various cell types including osteoblasts, adipocytes, and chondrocytes. The external environment and signals act to direct the pathway of differentiation. Importantly, situations such as aging and chronic kidney disease display alterations in the balance of osteoblast and adipocyte differentiation, adversely affecting bone integrity. Iron deficiency, which can often occur during aging and chronic kidney disease, is associated with reduced bone density. The purpose of this study was to assess the effects of iron deficiency on the capacity of progenitor cell differentiation pathways. Mouse and human progenitor cells, differentiated under standard osteoblast and adipocyte protocols in the presence of the iron chelator deferoxamine (DFO), were used. Under osteogenic conditions, 5μM DFO significantly impaired expression of critical osteoblast genes, including osteocalcin, type 1 collagen, and dentin matrix protein 1. This led to a reduction in alkaline phosphatase activity and impaired mineralization. Despite prolonged exposure to chronic iron deficiency, cells retained viability as well as normal hypoxic responses with significant increases in transferrin receptor and protein accumulation of hypoxia inducible factor 1α. Similar concentrations of DFO were used when cells were maintained in adipogenic conditions. In contrast to osteoblast differentiation, DFO modestly suppressed adipocyte gene expression of peroxisome-proliferating activated receptor gamma, lipoprotein lipase, and adiponectin at earlier time points with normalization at later stages. Lipid accumulation was also similar in all conditions. These data suggest the critical importance of iron in osteoblast differentiation, and as long as the external stimuli are present, iron deficiency does not impede adipogenesis.Item Editorial: Bone inside-out and outside-in signals: Control of body homeostasis(Frontiers Media, 2023-01-06) Sankar, Uma; Brun, Lucas R.; Plotkin, Lilian I.; Anatomy, Cell Biology and Physiology, School of MedicineItem Editorial: Genetic and molecular determinants in bone health and diseases(Frontiers Media, 2024-01-17) Rossi, Michela; Lowery, Jonathan W.; Del Fattore, Andrea; Orthopaedic Surgery, School of MedicineItem The essential role of Stat3 in bone homeostasis and mechanotransduction(2014-05) Zhou, Hongkang; Li, Jiliang; Marrs, James; Stocum, David L.; Atkinson, Simon; Aguilar, R. Claudio; Yokota, Hiroki, 1955-Signal Transducer and Activator of Transcription 3 (Stat3) is a transcription factor expressed in bone and joint cells that include osteoblasts, osteocytes, osteoclasts, and chondrocytes. Stat3 is activated by a variety of cytokines and growth factors, including IL-6/gp130 family cytokines. These cytokines not only regulate the differentiation of osteoblasts and osteoclasts, but also regulate proliferation of chondrocytes through Stat3 activation. In 2007, mutations of Stat3 have been confirmed to cause a rare human immunodeficiency disease – Job syndrome which presents skeletal abnormalities like: reduced bone density (osteopenia), scoliosis, hyperextensibility of joints, and recurrent pathological bone fractures. Changes in the Stat3 gene alter the structure and function of the Stat3 proteins, impairing its ability to control the activity of other genes. However, little is known about the effects of Stat3 mutations on bone cells and tissues. To investigate the in vivo physiological role of Stat3 in bone homeostasis, osteoblast/osteocyte-specific Stat3 knockout (KO) mice were generated via the Cre-LoxP recombination system. The osteoblast/osteocyte-specific Stat3 KO mice showed bone abnormalities and an osteoporotic phenotype because of a reduced bone formation rate. Furthermore, inactivation of Stat3 decreased load-driven bone formation, and the disruption of Stat3 in osteoblasts suppressed load-driven mitochondrial activity, which led to an elevated level of reactive oxygen species (ROS) in cultured primary osteoblasts. Stat3 has been found to be responsive to mechanical stimulation, and might play an important role in mechanical signal transduction in osteocytes. To investigate the role Stat3 plays in mechanical signaling transduction, osteocyte-specific Stat3 knockout (KO) mice were created. Inactivation of Stat3 in osteocytes presented a significantly reduced load-driven bone formation. Decreased osteoblast activity indicated by reduced osteoid surface was also found in osteocyte-specific Stat3 KO mice. Moreover, sclerostin (SOST) protein which is a critical osteocyte-specific inhibitor of bone formation, its encoded gene SOST expression has been found to be enhanced in osteocyte-specific Stat3 KO mice. Thus, these results clearly demonstrated that Stat3 plays an important role in bone homeostasis and mechanotransduction, and Stat3 is not only involved in bone-formation-important genes regulation in the nucleus but also in mediation of ROS and oxidative stress in mitochondria.Item Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats(MDPI, 2023-03-31) Born-Evers, Gabriella; Orr, Ashley L.; Hulsey, Elizabeth Q.; Squire, Maria E.; Hum, Julia M.; Plotkin, Lilian; Sampson, Catherine; Hommel, Jonathan; Lowery, Jonathan W.; Anatomy, Cell Biology and Physiology, School of MedicineGlobal loss of the neuropeptide Neuromedin-U (NMU) is associated with increased bone formation and high bone mass in male and female mice by twelve weeks of age, suggesting that NMU suppresses osteoblast differentiation and/or activity in vivo. NMU is highly expressed in numerous anatomical locations including the skeleton and the hypothalamus. This raises the possibility that NMU exerts indirect effects on bone remodeling from an extra-skeletal location such as the brain. Thus, in the present study we used microinjection to deliver viruses carrying short-hairpin RNA designed to knockdown Nmu expression in the hypothalamus of 8-week-old male rats and evaluated the effects on bone mass in the peripheral skeleton. Quantitative RT-PCR confirmed approximately 92% knockdown of Nmu in the hypothalamus. However, after six weeks, micro computed tomography on tibiae from Nmu-knockdown rats demonstrated no significant change in trabecular or cortical bone mass as compared to controls. These findings are corroborated by histomorphometric analyses which indicate no differences in osteoblast or osteoclast parameters between controls and Nmu-knockdown samples. Collectively, these data suggest that hypothalamus-derived NMU does not regulate bone remodeling in the postnatal skeleton. Future studies are necessary to delineate the direct versus indirect effects of NMU on bone remodeling.Item Extract of Artemisia dracunculus L. Modulates Osteoblast Proliferation and Mineralization(MDPI, 2023-08-30) Scott, Matthew C.; Bourgeois, Aleah; Yu, Yongmei; Burk, David H.; Smith, Brenda J.; Floyd, Z. Elizabeth; Obstetrics and Gynecology, School of MedicineThiazolidinediones (TZD) significantly improve insulin sensitivity via action on adipocytes. Unfortunately, TZDs also degrade bone by inhibiting osteoblasts. An extract of Artemisia dracunculus L., termed PMI5011, improves blood glucose and insulin sensitivity via skeletal muscle, rather than fat, and may therefore spare bone. Here, we examine the effects of PMI5011 and an identified active compound within PMI5011 (2′,4′-dihydroxy-4-methoxydihydrochalcone, DMC-2) on pre-osteoblasts. We hypothesized that PMI5011 and DMC-2 will not inhibit osteogenesis. To test our hypothesis, MC3T3-E1 cells were induced in osteogenic media with and without PMI5011 or DMC-2. Cell lysates were probed for osteogenic gene expression and protein content and were stained for osteogenic endpoints. Neither compound had an effect on early stain outcomes for alkaline phosphatase or collagen. Contrary to our hypothesis, PMI5011 at 30 µg/mL significantly increases osteogenic gene expression as early as day 1. Further, osteogenic proteins and cell culture mineralization trend higher for PMI5011-treated wells. Treatment with DMC-2 at 1 µg/mL similarly increased osteogenic gene expression and significantly increased mineralization, although protein content did not trend higher. Our data suggest that PMI5011 and DMC-2 have the potential to promote bone health via improved osteoblast maturation and activity.Item Glucocorticoid Excess in Bone and Muscle(Springer, 2018-03) Sato, Amy Y.; Peacock, Munro; Bellido, Teresita; Anatomy and Cell Biology, School of MedicineGlucocorticoids (GC), produced and released by the adrenal glands, regulate numerous physiological processes in a wide range of tissues. Because of their profound immunosuppressive and anti-inflammatory actions, GC are extensively used for the treatment of immune and inflammatory conditions, the management of organ transplantation, and as a component of chemotherapy regimens for cancers. However, both pathologic endogenous elevation and long-term use of exogenous GC are associated with severe adverse effects. In particular, excess GC has devastating effects on the musculoskeletal system. GC increase bone resorption and decrease formation leading to bone loss, microarchitectural deterioration and fracture. GC also induce loss of muscle mass and strength leading to an increased incidence of falls. The combined effects on bone and muscle account for the increased fracture risk with GC. This review summarizes the advance in knowledge in the last two decades about the mechanisms of action of GC in bone and muscle and the attempts to interfere with the damaging actions of GC in these tissues with the goal of developing more effective therapeutic strategies.